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Zusammenfassung

Viele Industrien sehen die Digitalisierung immer noch als große Hürde an.
Der juristische Sektor hat ebenfalls mit dieser Thematik zu kämpfen. Die In-
formationstechnologie erfährt im Hinblick auf diese Domäne eine zunehmende
Bedeutung. Die wachsende Anzahl an digitalisierten juristischen Dokumenten,
insbesondere an rechtliche Verträgen, untermauern diese These. Häufig liegen
diese Dokumente jedoch lediglich in Form von unstrukturierten Daten vor
und können so nur schwer von Computersystemen verarbeitet werden. Zu-
dem enthalten diese Dokumente verschiedene Formulierungen für den gleichen
Sachverhalt und überflüssige Informationen, die für den Leser nicht relevant
sind. Dies erschwert die Nutzung von digitalen Verträgen zusätzlich. Trotz-
dem sind die semantischen Inhalte in diesen Dokumenten für den Leser von
großer Bedeutung.

Diese Arbeit bietet eine Unterstützung für solche Geschäftsanforderungen durch
eine Softwarekomponente, die es ermöglicht semantisch Analysen auf jurit-
sichen Verträgen durchzuführen und diese strukturiert darzustellen. Um diesen
Prozess umzusetzen werden Verfahren aus dem Natural Language Processing
(NLP), wie beispielsweise Named Entity Recognition (NER) und Named En-
tity Disambiguation (NED), in eine Apache UIMA Pipeline integriert. Im Rah-
men dieser Arbeit wird die existierende Funktionalität von Lexia, einer Plat-
form für die kollaborative Bearbeitung und Analyse von juristischen Daten,
genutzt. Dabei wird die entwickelte Softwarekomponente in Lexia integriert.

Ein neuer Ansatz für NER, welcher auf Verträge zugeschnitten ist und auf Ver-
tragsvorlagen basiert, wird in dieser Arbeit implementiert. Dieses Vorgehen
wird durch einen auf Templates basierenden NED Ansatz erweitert. Die Eval-
uation des entwickelten Systems zeigt die zuverlässige Anwendbarkeit dieses
Vorgehens für juristische Verträge. Templatebasierte NER konnte einen F1

von 0,92 vorweisen, während Implementierungen basierend auf GermaNER
und DBpedia Spotlight lediglich einen Wert von 0,8 beziehungsweie 0,87 er-
reichen.
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Abstract

Nowadays, many sectors face the obstacle called digitalization. So does the
legal domain as well. The rising of legal technology is highlighted by the in-
creasing number of digitized legal documents, in particular legal contracts.
After capturing these, in many cases they are only available as unstructured
data and thus barely processable by computer systems. However, the semantic
knowledge within such a document is highly relevant to the reader. Further-
more, different contracts often incorporate diverse wording, while also includ-
ing a lot of superfluous information. All these facts hamper the utilization of
digitized legal contracts.

This work provides support for this business need by implementing a software
component, enabling semantic analysis and structuring of legal contracts. In
order to implement this process, common Natural Language Processing (NLP)
tasks like Named Entity Recognition (NER) and Named Entity Disambigua-
tion (NED) are incorporated into an Apache UIMA pipeline. In the course
of this study, the existing functionality of Lexia a collaborative legal data sci-
ence environment is utilized. Hereby, the software component being developed
during this thesis is integrated into Lexia.

A new approach to NER, tailored to legal contracts, which are based on tem-
plates, called templated NER is implemented in the framework of this study.
Then this method is enhanced by so called templated NED. The evaluation of
the developed system, using German legal data, demonstrates the applicability
of such approaches. Templated NER performed with an overall F1 measure
of 0.92, while implementations based on GermaNER and DBpedia Spotlight
only achieved 0.8, respectively 0.87.

Keywords: Natural Language Processing, Named Entity Recognition, Named
Entity Disambiguation, Named Entity Linking, Legal Text Analysis, UIMA,
GermaNER, DBpedia Spotlight

IX





Contents

Abstract IX

Abbreviations XV

List of Figures XIX

List of Tables XXI

List of Listings XXIII

1 Introduction & Motivation 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Structured Information versus Unstructured Information 3
1.2.2 Natural Language Processing (NLP) . . . . . . . . . . . 3
1.2.3 Named Entity Recognition (NER) . . . . . . . . . . . . . 4
1.2.4 Word Sense Disambiguation (WSD) . . . . . . . . . . . . 5
1.2.5 Named Entity Disambiguation (NED) . . . . . . . . . . 6

1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work 8
2.1 From Unstructured Data to Structured Information . . . . . . . 8
2.2 NER & NED in General . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 NER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 NED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 NER & NED in Law . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 NER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 NED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Research Method 19
3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . 20

XI



Contents

4 Concepts & Design 23
4.1 Concepts of Named Entity Recogntion . . . . . . . . . . . . . . 23

4.1.1 Rule-based . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Knowledge-based . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2.1 Artequakt . . . . . . . . . . . . . . . . . . . . . 26
4.1.2.2 DBpedia Spotlight . . . . . . . . . . . . . . . . 27

4.1.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3.1 SML . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3.1.1 Approach to NER of Cardellino et al. . 32
4.1.3.1.2 GermaNER . . . . . . . . . . . . . . . 34

4.1.3.2 SSML . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.3.3 USML . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.4 Templated . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Concepts of Disambiguation . . . . . . . . . . . . . . . . . . . . 43
4.2.1 SML-based NED . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1.1 Bayesian Classification . . . . . . . . . . . . . . 45
4.2.1.2 Information-theoretic Approach . . . . . . . . . 48
4.2.1.3 Approach to NED of Cardellino et al. . . . . . 50

4.2.2 USML . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Templated . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Involved Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Lexia Framework . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 SocioCortex . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Requirements Analysis . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.1 Functional Requirements . . . . . . . . . . . . . . . . . . 60
4.4.2 Non-functional Requirements . . . . . . . . . . . . . . . 62
4.4.3 Summary and Prioritization . . . . . . . . . . . . . . . . 64

4.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.1 Conceptual Overview . . . . . . . . . . . . . . . . . . . . 66
4.5.2 Software Architecture . . . . . . . . . . . . . . . . . . . . 68
4.5.3 Mapping between Semantic Model Elements and Socio-

Cortex Entities . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.4 Workflow Overview . . . . . . . . . . . . . . . . . . . . . 71
4.5.5 REST API . . . . . . . . . . . . . . . . . . . . . . . . . . 73

XII



Contents

5 Implementation Phase 77
5.1 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Lexia’s existing Pipeline Architecture . . . . . . . . . . . 77
5.1.2 Lexia’s Data Model for Legal Contracts . . . . . . . . . . 80
5.1.3 NER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.3.1 GermaNER . . . . . . . . . . . . . . . . . . . . 85
5.1.3.2 DBpedia Spotlight . . . . . . . . . . . . . . . . 95
5.1.3.3 Templated . . . . . . . . . . . . . . . . . . . . . 98

5.1.4 NED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.4.1 Semantic Models . . . . . . . . . . . . . . . . . 108
5.1.4.2 Disambiguation Component . . . . . . . . . . . 109

5.1.4.2.1 Implementation . . . . . . . . . . . . . 109
5.1.4.2.2 Accessibility from the REST API . . . 112

5.2 UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.1 Model Environment . . . . . . . . . . . . . . . . . . . . . 114

5.2.1.1 Services for the Model Environment . . . . . . 115
5.2.1.2 Model Management . . . . . . . . . . . . . . . 115
5.2.1.3 Model Definition . . . . . . . . . . . . . . . . . 117

5.2.2 Pipeline Execution . . . . . . . . . . . . . . . . . . . . . 120

6 Evaluation 124
6.1 Qualitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1.1 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.1.2 Interview Guideline . . . . . . . . . . . . . . . . . . . . . 124
6.1.3 Selection of Interview Partners . . . . . . . . . . . . . . . 125
6.1.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Quantitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.1 NER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.1.1 Evaluation Method . . . . . . . . . . . . . . . . 127
6.2.1.2 Data used . . . . . . . . . . . . . . . . . . . . . 128
6.2.1.3 Assessment . . . . . . . . . . . . . . . . . . . . 129

6.2.2 NED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Discussion 136
7.1 Reflection on the Research Questions . . . . . . . . . . . . . . . 137
7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3 Limitations and Feature Work . . . . . . . . . . . . . . . . . . . 142

XIII



Contents

Bibliography 143

Appendix i
A Existing Lexia Classes . . . . . . . . . . . . . . . . . . . . . . . ii

A.1 PipelineRepository . . . . . . . . . . . . . . . . . . . . . ii
A.2 Abstract Pipeline . . . . . . . . . . . . . . . . . . . . . . v
A.3 PipelineExecutor . . . . . . . . . . . . . . . . . . . . . . viii
A.4 Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

B Newly implemented Classes . . . . . . . . . . . . . . . . . . . . xiv
B.1 CoNNLSegmenter . . . . . . . . . . . . . . . . . . . . . . xiv
B.2 NETransformer . . . . . . . . . . . . . . . . . . . . . . . xv
B.3 DBPediaNETransformer . . . . . . . . . . . . . . . . . . xviii

C Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx
C.1 Interview Guideline . . . . . . . . . . . . . . . . . . . . . xx
C.2 Interview 1 . . . . . . . . . . . . . . . . . . . . . . . . . xxii
C.3 Interview 2 . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
C.4 Interview 3 . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

XIV



Abbreviations

AI . . . . . . . . . . . . . . . Artificial Intelligence

AL . . . . . . . . . . . . . . . Active Learning

API . . . . . . . . . . . . . . Application Programming Interface

BIO . . . . . . . . . . . . . . Beginning-Inside-Outside

BIS . . . . . . . . . . . . . . Business Information System

CAS . . . . . . . . . . . . . Common Analysis System

CRF . . . . . . . . . . . . . Conditional Random Field

DMP . . . . . . . . . . . . . Diff-Match-Patch

DT . . . . . . . . . . . . . . . Decision Tree

ECHR . . . . . . . . . . . European Court of Human Rights

FN . . . . . . . . . . . . . . . False Negatives

FP . . . . . . . . . . . . . . . False Posititives

FR . . . . . . . . . . . . . . . Function Requirement

HMM . . . . . . . . . . . . Hidden Markov Model

HTML . . . . . . . . . . . Hyptertext Markup Language

HTTP . . . . . . . . . . . Hypertext Transfer Protocol

ICF . . . . . . . . . . . . . . Inverse Candidate Frequency

IDF . . . . . . . . . . . . . . Inverse Document Frequency

IE . . . . . . . . . . . . . . . . Information Extraction

IEEE . . . . . . . . . . . . . Institute of Electrical and Electronics Engineers

IR . . . . . . . . . . . . . . . . Information Retrieval

IS . . . . . . . . . . . . . . . . Information System

IT . . . . . . . . . . . . . . . . Information Technology

JSON . . . . . . . . . . . . JavaScript Object Notation

XV



Contents

MEM . . . . . . . . . . . . Maximum Entropy Model

ML . . . . . . . . . . . . . . . Machine Learning

MLT . . . . . . . . . . . . . More Like This

NE . . . . . . . . . . . . . . . Named Entities

NED . . . . . . . . . . . . . Named Entity Disambiguation

NEL . . . . . . . . . . . . . Named Entity Linking

NER . . . . . . . . . . . . . Named Entity Recognition

NERC . . . . . . . . . . . . Named Entity Recognition and Classification

NFR . . . . . . . . . . . . . Non-functional Requirements

NLP . . . . . . . . . . . . . Natural Language Processing

OPAC . . . . . . . . . . . . Online Public Access Catalogue

PDF . . . . . . . . . . . . . Portable Document Format

POS . . . . . . . . . . . . . Part-of-speech

regex . . . . . . . . . . . . . Regular Expressions

REST . . . . . . . . . . . . Representational State Transfer

RUTA . . . . . . . . . . . . Rule-based Text Annotation

SML . . . . . . . . . . . . . Supervised Machine Learning

SOAP . . . . . . . . . . . . Simple Object Access Protocol

SSML . . . . . . . . . . . . Semi-supervised Machine Learning

SVM . . . . . . . . . . . . . Support Vector Machine

TF . . . . . . . . . . . . . . . Term Frequency

TF-IDF . . . . . . . . . . Term Frequency-Inverse Document Frequency

TN . . . . . . . . . . . . . . . True Negatives

TP . . . . . . . . . . . . . . . True Positives

TV . . . . . . . . . . . . . . . Television

UI . . . . . . . . . . . . . . . User Interface

UIMA . . . . . . . . . . . . Unstructured Information Management Architecture

URI . . . . . . . . . . . . . . Uniform Resource Identifier

USML . . . . . . . . . . . . Unsupervised Machine Learning

VSM . . . . . . . . . . . . . Vector Space Model

XVI



Contents

WSD . . . . . . . . . . . . . Word Sense Disambiguation

XML . . . . . . . . . . . . . eXtensible Markup Language

XVII





List of Figures

2.1 Text processing chain for IR . . . . . . . . . . . . . . . . . . . . 9
2.2 The different parts of words . . . . . . . . . . . . . . . . . . . . 10

3.1 Information Systems Research Framework . . . . . . . . . . . . 20

4.1 The Artequakt Architecture . . . . . . . . . . . . . . . . . . . . 26
4.2 The UI of the DBpedia Spotlight Web Application . . . . . . . . 30
4.3 The tagger pipeline of GermaNER . . . . . . . . . . . . . . . . . 35
4.4 Architecture of Lexia . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Data model of Lexia . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Processing pipeline for determining linguistic patterns with Apache

UIMA and Ruta . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7 Different annotation types shown in the Lexia user interface . . 57
4.8 Meta model of the SocioCortex . . . . . . . . . . . . . . . . . . 58
4.9 Example of an employment agreement . . . . . . . . . . . . . . 66
4.10 Conceptual overview of the recognition and disambiguation pro-

cess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.11 Conceptual architecture of the semantic analysis component . . 68
4.12 Target architecture of Lexia . . . . . . . . . . . . . . . . . . . . 69
4.13 Tree hierarchy of semantic model elements and SocioCortex en-

tities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.14 Conceptual workflow model of the semantic analysis . . . . . . . 71

5.1 Intended life-cycle of the Pipeline . . . . . . . . . . . . . . . . . 85
5.2 Actual life-cycle of the GermaNERPipeline . . . . . . . . . . . . 86
5.3 Components of the front-end implementation . . . . . . . . . . . 114
5.4 Screenshot of the model overview . . . . . . . . . . . . . . . . . 116
5.5 Screenshot of the view to create a model . . . . . . . . . . . . . 116
5.6 Screenshot of the model edit view . . . . . . . . . . . . . . . . . 118
5.7 Screenshot of the object diagram . . . . . . . . . . . . . . . . . 118
5.8 Modal view to create a model type . . . . . . . . . . . . . . . . 119

XIX



List of Figures

5.9 Modal view to create a type attribute . . . . . . . . . . . . . . . 119
5.10 Modal view to summarize a given model type . . . . . . . . . . 120
5.11 View to select a contract . . . . . . . . . . . . . . . . . . . . . . 120
5.12 Screenshot of the pipeline selection view . . . . . . . . . . . . . 121
5.13 Screenshot of the pipeline selection view after execution . . . . . 121
5.14 Screenshot of the view to configure the disambiguation . . . . . 122
5.15 Screenshot of the view revealing the results of NED . . . . . . . 122
5.16 Screenshot of the contract view along with the structured se-

mantic information . . . . . . . . . . . . . . . . . . . . . . . . . 123

XX



List of Tables

4.1 Exemplary output of GermaNER . . . . . . . . . . . . . . . . . 36
4.2 Comparison of NER approaches . . . . . . . . . . . . . . . . . . 42
4.3 Notational conventions for SML-based NED . . . . . . . . . . . 45
4.4 Highly informative indicators for three ambiguous French words 49
4.5 Comparison of NED approaches . . . . . . . . . . . . . . . . . . 53
4.6 Summary of all requirements . . . . . . . . . . . . . . . . . . . . 65
4.7 Mapping between semantic model elements and SocioCortex en-

tities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.8 REST API for the semantic analysis component . . . . . . . . . 75
4.9 Existing REST API routes used for the semantic analysis com-

ponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Composition of evaluation data set . . . . . . . . . . . . . . . . 129
6.2 Composition of evaluation data set for templated NER . . . . . 129
6.3 Confusion matrix for GermaNER implementation . . . . . . . . 130
6.4 GermaNER implementation performance . . . . . . . . . . . . . 131
6.5 Confusion matrix for DBpedia Spotlight implementation . . . . 131
6.6 DBpedia Spotlight implementation performance . . . . . . . . . 132
6.7 Confusion matrix for templatedNER . . . . . . . . . . . . . . . 132
6.8 Templated NER performance . . . . . . . . . . . . . . . . . . . 133
6.9 NER performance of all three system over the evaluation data set134

7.1 Verification of the requirements . . . . . . . . . . . . . . . . . . 139

XXI





List of Listings

1.1 Example of a setence containing named entities . . . . . . . . . 4
1.2 Example of the ambiguity of one word . . . . . . . . . . . . . . 5
1.3 Example of the POS ambiguity of one word . . . . . . . . . . . 5

2.1 Example of NEs including semantic information . . . . . . . . . 12
2.2 Example of a sentence to distinguish tasks of NER . . . . . . . 13
2.3 Example sentences to link NE to a knowledge base . . . . . . . 15
2.4 Example of a sentence including NEs in the legal domain . . . . 17

4.1 Example of rules for rule-based NER . . . . . . . . . . . . . . . 24
4.2 Seed example of spelling rules . . . . . . . . . . . . . . . . . . . 39
4.3 Example sentence to illustrate the difference between NED and

WSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Algorithm for disambiguation according to Naive Bayes . . . . . 48
4.5 Flip-Flop algorithm to find indicators for disambiguation . . . . 49

5.1 Excerpt of PipelineRepository to manage pipelines . . . . . . . . 78
5.2 Excerpt of the abstract base class for all pipelines . . . . . . . . 79
5.3 Excerpt of abstract base class LegalDocument . . . . . . . . . . 81
5.4 Method to store contracts . . . . . . . . . . . . . . . . . . . . . 83
5.5 Method to populate a DraftedDocument . . . . . . . . . . . . . 84
5.6 Excerpt of GermaNERPipeline . . . . . . . . . . . . . . . . . . 87
5.7 The method preArticle . . . . . . . . . . . . . . . . . . . . . . . 87
5.8 The new assemblePipeline method . . . . . . . . . . . . . . . . . 88
5.9 The PersonPatterns class . . . . . . . . . . . . . . . . . . . . . 90
5.10 Excerpt of PersonAnnotator class . . . . . . . . . . . . . . . . . 91
5.11 Creation of analysis engines for the type system transformation 92
5.12 The method initCas of GermaNERPipeline . . . . . . . . . . . 92
5.13 The method process of GermaNERPipeline . . . . . . . . . . . . 93
5.14 Excerpt of the method processCorpusWithPipeline ofDocument-

Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

XXIII



List of Listings

5.15 Example response for the /api/semanticanalysis/pipeline request 95
5.16 Excerpt of assemblePipeline from DBPediaPipeline . . . . . . . 97
5.17 Example sentence from a template . . . . . . . . . . . . . . . . 99
5.18 Example sentence from a instantiated template . . . . . . . . . 99
5.19 Method findTemplateToArticleInstance of the DiffController . . 100
5.20 The method assemblePipeline of TemplatedNERPipeline . . . . 101
5.21 Excerpt of PersonNamedEntityDiffAnnotator . . . . . . . . . . 103
5.22 Excerpt of the process method from PersonNamedEntityDiffAn-

notator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.23 Excerpt of the process method from TemplatedNERPipeline . . 106
5.24 Excerpt of the Model class . . . . . . . . . . . . . . . . . . . . . 108
5.25 Excerpt of the method linkModelToContractTemplated . . . . . 110
5.26 Conceptual example of a model . . . . . . . . . . . . . . . . . . 111
5.27 Example of a sentence from a template . . . . . . . . . . . . . . 111
5.28 Excerpt of the method linkModelToContractTemplated (contin-

ued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.29 Excerpt of the method linkTemplatedEntities . . . . . . . . . . . 113

6.1 Example to illustrate the problem with evaluating NER . . . . . 127

XXIV



1 Introduction & Motivation

1.1 Motivation

The legal domain as well as the media domain both heavily rely on text as a
central medium. 10 years ago, the media industry was one of the first indus-
try sectors that was confronted with a rapid digitalization of business models,
processes and the treatment of texts. For example, mediums like classic news-
papers or television (TV) news were dominant in the consumption of informa-
tion by humans. Nowadays, a large fraction of this information is consumed
through internet offerings. Social media platforms such as Facebook1, Twit-
ter2 or Instagram3 has arrived from the bottom and disrupted the whole media
industry. The disruption of existing behaviours is rather a typical feature of
the digitalization[88].

We assume that the legal domain can expect a similar transformation in the
next years. Trends and many start ups in the UK and in particular the USA
already show, the legal domain is facing such a revolution as well. Due to
the digitalization information can be found and consumed faster[131]. The
rising of legal technology is highlighted by the increasing digitalization of legal
documents as well[118].

When talking about digitalization, it must be distinguished between unstruc-
tured, semi-structured and structured data. In terms of digitizing texts these
distinctions must be considered as well[66]. Section 1.2.1 explains the differ-
ences between these concepts. Structured data can be processed very well and
it is the simplest way to manage information. However, semi-structured and

1http://www.facebook.com
2http://www.twitter.com
3http://www.instagram.com
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1 Introduction & Motivation

in particular unstructured data is hard to process. Hence, transforming un-
structured or semi-structured data into structured data is an important task
in order to manage and process information[128].

Contracts are already digitized quite a lot. This is also due to the drafting
process. Often a legal contract is not written with pencil and paper, but
already created digital. Usually this results in semi-structured data. A huge
added value can be created, when modeling and structuring these digitized
legal documents properly[136]. This is in particular also true, due to the fact
that lawyers and legal experts use different wording a lot. Having two lawyers
creating two contracts with the same intent, the result is most likely two
different contracts. Furthermore, legal contracts include a lot of information
which is not highly relevant to the reader[66]. When there is a structured way
of revealing the crucial information while neglecting superfluous passages of
text of such a document, the resulting view would be the same. This is the
main motivation behind this study.

The technical capabilities in order to accomplish such a task have arisen most
recently. Intensive digital work is becoming more and more attractive, due to
the increasing possibilities of text mining capabilities, support for data, time,
and knowledge[136]. Not just the computational power increases yet continu-
ously, but also new technologies such as Apache Spark4 or Hadoop5 originate
and allow even more powerful clusters. Moreover, most recent research fo-
cuses a lot on Natural Language Processing (NLP) approaches. A lot of NLP
techniques apply Machine Learning (ML) algorithms[30].

Having the legal technology on a growing branch, along with all the new tech-
nical capabilities, as well as the fact, that the structuring of text through
computer-supported-analysis is very attractive for the legal domain, further
research in this particular field is an interesting and promising task.

4http://spark.apache.org
5http://hadoop.apache.org
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1 Introduction & Motivation

1.2 Basic Knowledge

In this section some fundamental terms and concepts for this work are ex-
plained. The described knowledge constitutes the basis for the rest of this
thesis and thus is required for the following chapters.

1.2.1 Structured Information versus Unstructured

Information

Information can be decomposed into structured, semi-structure, and unstruc-
tured information. Structured information refers to information having a pre-
defined data model which allows machines to process this information as its
interpretation is possible without ambiguities[52, 53]. Examples for represen-
tations of structured information are databases with a well-defined scheme or
objects in object-oriented programming languages. Semi-structured informa-
tion occurs for instance if the data is stored in the eXtensible Markup Lan-
guage (XML) format. In contrast to this, unstructured information does not
have a predefined data model and therefore the computer-aided processing
is difficult, as the interpretation may be ambiguous[52, 109]. Examples for
unstructured information are arbitrary texts, pictures or a scanned Portable
Document Format (PDF) file. Unstructured information is the lion’s share
and fastest growing kind of the available information and thus, may contain
lots of useful information, e.g. for companies[53].

1.2.2 Natural Language Processing (NLP)

Natural language processing is a research discipline focusing on analyzing un-
structured information provided in natural language by the utilization of com-
puter systems. For that reason, this unstructured information is enhanced
with meta-information provided in a structured form. Natural language refers
to human languages like English or German, for example. It may be pro-
vided in different forms like written text or spoken text[5, 82]. However, for
the purpose of this work, only written text as input is considered. NLP is a
pretty high-level discipline that can be decomposed into several sub-disciplines

3



1 Introduction & Motivation

like Information Retrieval (IR), Information Extraction (IE), machine trans-
lation or language generation, for instance. In this work the focus is set on
the two former ones. Today, NLP is mainly an application of ML approaches,
even though it still includes traditional methodologies such as rule-based tech-
niques. More precise, it applies those methods to natural language. This is
why NLP is also sometimes referred as computational linguistics[22].

NLP has received lots of attention during the last years due to the constantly
improving performance of computer systems and increasing amounts of pub-
licly available language resources like dictionaries and thesauri[75]. This evo-
lution has been entailing new possibilities that have not been imaginable in
the past. Distributed and concurrent processing is such a possibility that has
been enabled by machines having several processors instead of only one. This
has made it feasible to apply complex algorithms to large text collections, for
instance.

1.2.3 Named Entity Recognition (NER)

NER is a task of NLP. Each continuous text contains proper names. Those
may be names of persons, organizations or locations. Named Entities (NE)
are phrases that contain these names[117].

Listing 1.1: Example of a setence containing named entities
The [ORG Sinc GmbH] located in [LOC Wiesbaden] is represented by its CEO Mr. [PER

Martin Rollinger].

Listing 1.1 shows a sentence containing named entities. This sentence contains
three named entities: (1) Sinc GmbH is an organization, (2) Wiesbaden is a
location, and (3) Martin Rollinger is a person. "NER is an important task of
IE systems."[117] The software component to develop in the context of this
study is an IE system as well. Hence, NER is a key task of this work.

Chapter 2.2.1 discusses NER in more detail, before Chapter 2.3.1 handles
about NER in particular within the legal domain. Eventually, Chapter 4.1
introduces some different approaches to conduct NER tasks.

4
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1.2.4 Word Sense Disambiguation (WSD)

Another task of NLP is WSD. Depending on the application, WSD is clos-
esly related to NER. Each natural language consists of thousands of different
words. Nevertheless, concepts such as synonyms or acronyms exist. Due to
this, many words have the same meaning as well as they have different mean-
ings or senses[84]. There is an ambiguity about how to interpret a word, for
such a word, having different meanings but given out of context[77]. As a
simple example of ambiguity, consider the word right and two of the senses
that can be found in the Oxford dictionary.

Listing 1.2: Example of the ambiguity of one word
− Morally good, justified , or acceptable.
− On, towards, or relating to the side of a human body or of a thing which is to the

east when the person or thing is facing north.

Listing 1.2 depicts two of the meanings the word right has. Even though the
two picked senses concern just one Part-of-speech (POS), that is adjectives,
the two meanings diverge a lot. The first sense is rather ethical and deals
with the question whether an action is morally accepted or not. On the other
side, the second meaning is just about a direction. The task of disambiguation
is to determine which of the meanings of a polysemous word is invoked in a
particular use of the word[84].

There is also another kind of ambiguity, where a word can be used as different
POS[84]. Going back to the previous example, right may be used as a noun,
or as an adverb.

Listing 1.3: Example of the POS ambiguity of one word
− The human right to freedom of expressions applies to everyone.
− Please turn right on the next intersection .

Two sentences incorporating the word right are revealed in Listing 1.3. In
the first example, right is clearly a noun, whereas in the second example,
the word is used as an adverb. This determination of the usage of a word
in terms of POS is called tagging[25]. These two different notions however
clearly relate[73]. Using a word as an adverb instead of as a noun is obviously
a different usage, with another meaning involved. Thus this can be seen as a
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WSD problem[84]. Reversely, differentiating word senses may be viewed as a
tagging problem, however using semantic tags rather than POS.

When we want to be able to link a NE towards a semantic function or tag,
approaches of WSD are required. For the purpose of this work, only NEs need
to be linked. The term used in this work, describing this linkage process is
Named Entity Disambiguation (NED) and is introduced in Section 1.2.5.

1.2.5 Named Entity Disambiguation (NED)

The automatic understanding of the meaning of text has been a major goal
of research in computational linguistics and is highly relevant for the industry
as well[95]. NED heavily relates to NER. The aim of NED is to link NEs,
discovered by NER, to an entry in arbitrary knowledge base. However, such
an entry does not need to be necessarily in a knowledge base, it can be also
part of a model or some other defined reference system[29, 39]. As long as the
entry in the knowledge base provides some information gain, this task can be
quite helpful in terms of understanding the semantic of a given text.

Chapter 2.2.2 treats NED in detail, before Chapter 2.3.2 is about NED within
the legal domain. Later on in this thesis, Chapter 4.2 explains different ap-
proaches in order to conduct NED.

1.3 Structure

From an abstract view, this thesis compromises three major parts. First, a
comprehensive literature review on subject-related topics is conducted. In the
second part, based on the performed literature review, a software component
for the semantic analysis and structuring of legal contracts is developed. Fi-
nally, the prototype is evaluated. Hereby, the work is structured as described
below.

Chapter 1 provided already a short motivation along with an introduction.
This also includes the explanation of some basic terms, highly relevant for
this work. The next Chapter (2) deals with related work. The goal of this
chapter is to familiarize the reader with previous approaches to NER and
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NED. This is mandatory, because these approaches are incorporated heavily
into this thesis.

Chapter 3 verbalizes the objectives of this work. For this purpose, the research
questions of this study are defined. Furthermore, the research method this
thesis is based on, is depicted. Now, the conceptual part of this thesis can be
discussed. Chapter 4 first introduces different approaches to NER and NED.
Each section contains a clear comparison of the different approaches. This
work involves two existing systems, Lexia and SocioCortex. Those systems
are explained in this chapter as well. Eventually, a requirement analysis is
conducted in order to define a proper software architecture. The prototypical
implementation is dealt with in Chapter 5.

A comprehensive evaluation of the developed prototype is conducted in Chap-
ter 6. Finally, the results relevant to the research questions from all three parts
of this work are discussed in Chapter 7.

7



2 Related Work

In this chapter two NLP tasks, which play an crucial role in this work, are
described. Each task can be performed by utilizing various approaches. These
approaches are described in Chapter 4. Specific frameworks, along with imple-
mentation details and ways how to incorporate them into an Apache Unstruc-
tured Information Management Architecture (UIMA) pipeline, are discussed
in Chapter 5. Before discussing NER and NED, Section 2.1 deals with recent
research in terms of structuring unstructured information. The second section
of this Chapter relates to NER and NED in general, while the third section
focuses on the legal domain.

2.1 From Unstructured Data to Structured

Information

Business Information Systems (BIS) have been existing already for a long
period. They have arisen from usual Information Systems (IS), which are
socio-technical systems to cover information requests[65, 19]. A BIS is a group
of interrelated components, that work collectively to carry on input, processing
output and control actions in order to convert data into information. That in-
formation may be used to support forecasting, planning, control, coordination,
decision making and operational activities in an organization[81]. When we
look at the definitions of data and information, the task of such a BIS becomes
pretty clear.

Data comes in form of a number, text or statement such as a measurement or a
date, and hence is a raw fact. Information on the other side is processed data.
The process of transforming data into information adds a sense to the data[56].
With other words, this process is the structuring of unstructured data. In the
literature concerning this transformation, the term from unstructured data to
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structured data or from unstructured information to structured information
is used frequently, e.g. [139]. Those terms have one huge weakness, they
jumble the definitions of data and information a lot, depending on the local
distinctions. Thus a clear distinction for this study is necessary. The wording
in this thesis conforms to the definitions discussed here.

Coming back to one of the key tasks of a BIS, the transformation of unstruc-
tured data into structured information. Blumberg already noticed, that "the
management of unstructured data is recognized as one of the major unsolved
problems in the Information Technology (IT) industry"[18]. This was true
back then, when BIS were established. Nowadays, a lot more research has
been done in the field of this transformation process. Most of the research
belongs to the research of IR and IE.

Figure 2.1: Text processing chain for IR

Source: own illustration based on [125]

Singh and Gupta came up with a text processing chain for IR[125]. Figure 2.1
outlines the key findings of Singh and Gupta. The information retrieval chain
starts with raw text. This is a form of unstructured data, usually a sequence
of plain characters. Such a sequence belongs to a specific document out of
a corpus. Documents can belong to various domains, while multiple type of
documents exist. While proceeding within the chain, data is structured during
the first parts of the chain. The structured data can be used to extract semantic
knowledge later on. Each method in the chain enriches the raw text with more
structure. This is a continuous process whereas the transition to structured
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information along with the semantic analysis is interlocking. Hence, there is
no clear cut between the two phases[125].

The lexical phase converts a sequence of plain characters into a sequence of
tokens. This is the first step towards structured information[62]. Approaches
such as NER, POS tagging, stop-words, text segmentation or tokenization take
place in that phase. NER is discussed in more detail in Section 2.2.1, Section
2.3.1 as well as in Chapter 4.1.

After the lexial phase, the morphological phase takes place. Linguistic mor-
phology is the study of words[9]. This phase deals with parts of words, the
structure of words, and with relationships between words.

Figure 2.2: The different parts of words

Source: own illustration based on [9]

Figure 2.2 reveals the different parts of words. When looking at a word, there
are mainly four parts of it[125]. The stem is common to all inflected variants
of a word. Moreover, a word may have a prefix and a suffix. The prefix is
an affix placed before the stem of the word and changes an existing word into
another one. The suffix is very similar to a prefix, but the affix is placed after
the stem. When a word has neither a suffix, nor an prefix, it is the primary
lexial unit of a word and called a root word [21]. The literature suggest sev-
eral methodologies concerning the morphological phase, including coreference
resolution, lemmatization and stemming.

When the process has passed through the first two phases, the raw text has
been already enriched with some structure. This is where the semantic analysis
already takes part. It starts with the syntactic phase, attending to use syntactic
characteristics in order to extract semantic knowledge[99]. Typical approaches
of that phase are predicate annotations or syntactic structures.

The final phase of the processing chain for IR is the semantic phase. This
phase eventually tries to understand the semantic of a given text[125]. In
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other words, the structured and preprocessed text is used for some kind of
onthology matching. The tagged entities are linked to semantic functions.
Recent research and literature suggests a huge variety of methodologies. Those
may be keyword extraction, latent semantic analysis, measures, semantic role
labeling, sentiments, WSD or NED. Section 2.2.2 and Section 2.3.2 as well as
Chapter 4.2 discusses NED in more detail.

The prototypical implementation being created during this thesis, incorporates
just two phases of the here discussed process. During the lexical phase, in
particular NER is performed. Moreoever, preprocessing tasks such as POS
tagging or tokenization is used as well. Afterwards, the semantic phase is
conducted in the form of NED.

2.2 NER & NED in General

In this section, NER and NED concepts from the literature are explained
and discussed. However, this section deals with general approaches to NER
and NED, loosened from the legal domain. In fact, the related work treated
here is not binded to any domain. Section 2.3 refers to the legal domain in
particular.

2.2.1 NER

Chapter 1.2.3 already introduced NER briefly. The first important task con-
cerning this work is NER. Each continuous text contains proper names. The
task of detecting and classifying those names is NER[12]. According to Sur-
deanu et al.[127], NER belongs to the methodologies of IE. Nevertheless, it
does support and even accelerate IR a lot. This conforms to the text process-
ing chain for IR[125]. While IE is more of NLP and ML to extract information
from unstructured data, IR retrieves the information stored in some data stor-
age.

There has been a lot of work on NER, in particular for the English language[117].
Jurafsky summarizes a lot of his research in his book Speech & Language
processing[77, p. 349 ff.]. Borthwick[22] gives a good overview about the re-
search in this field. When recognizing NEs, we distinguish between distinct
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categories. The literature as well as various shared tasks suggest different
categorizations. Borthwick[22] for instance, uses the following categories in
his work: person, location, organization, date, time, percentage, monetary
value, and "non-of-the-above". The CoNLL-20036 shared task suggests to use
just three, respectively four, categories: person, location, organization, and
other[117]. The same categorization has been used by Locke and Martin[83]
for their NER classifier to extract NEs from tweets. Such a categorization of
NE types often depend on the domain. For this work, the suggestion from
CoNLL-2003 is assumed, enhanced by some of the categories from the lit-
erature. This leads to the following set of categories: person, organization,
location, date, money value, reference, and other.

In the literature, different definitions and names are used to describe NER.
Cardellino et al.[31] for instance, use the term Named Entity Recognition and
Classification (NERC). However, here the classification does not refer to entity
linking or WSD, but to the classification of NEs into the distinct categories.
Collins and Singer[35] as well as Downey et al.[46] and Elsner et al.[49] split
NER into two different tasks. They differentiate between NE segmentation and
NE classification. In the first step, they segment and thus extract NEs, before
they try to perform the classification into the different categories. Comparing
to Cardellino[31], the segmentation complies to the recognition task, whereas
the classification refers to the same in both approaches. Section 1.2.4 already
introduced WSD. Later in this work (Section 2.2.2, Section 2.3.2, and Chapter
4.2), the relationship of WSD and NED is explained. However, nothing dis-
cussed in this section refers to either WSD or NED yet. In order to describe
the task of recognizing NEs, the term NER is consistently used during this
work. Hereby, NER is referred to the approaches described above.

Listing 2.1: Example of NEs including semantic information
Microsoft president Bill Gates.

Listing 2.1 gives a nice example to differentiate between NER and subsequent
technologies. A NER system should report that Bill Gates is a person and
Microsoft an organization. A further task would be to identify the relationship
between Bill Gates and Microsoft. A further example shown in Listing 2.2 can

6http://www.conll.org
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be used to describe the difference between the two tasks within NER and
further steps, such as entity linking.

Listing 2.2: Example of a sentence to distinguish tasks of NER
Steve Jobs was the CEO of Apple.

The first task of NER, namely the NE segmentation, needs to identify Steve
Jobs as well as Apple as NEs. It may be rather easy to categorize Steve
Jobs as a person, nonetheless there is an ambiguity when talking about Ap-
ple. The classification task of NER must solve this ambiguity in order to tell
that Apple is an organization in this case, rather than the fruit. Again, the
relationship may be the task of a further component. Massive research has
been done to solve issues like this one, but also to address other problems such
as language portability[22]. Krupka and Hausman[79] developed a solution
called netowl(tm) to address this issue. However, the majority of current NER
systems support only single languages or they have different modes for some
languages. GermaNER7 developed by Benikova et al.[12] for instance, is a
German NER tool. The Stanford University developed Stanford NER8, a Java
implementation of a NER, supporting different language modes like Spanish,
German, English, and Chinese.

State of the art NER from the literature use a couple of different approaches for
the actual implementation. Even though the majority of NER tools, use a com-
bination of different technologies and features including Gazetteers, Mikheev
et al.[92] developed a NER tool without a Gazetteer. They combine classi-
cal rule-based grammars with statistical models. The previously mentioned
GermaNER uses a Conditional Random Field (CRF) classifier for their imple-
mentation. A pretty common technique used for NER is theMaximum Entropy
Model (MEM). Systems by Bender et al.[10], Chieu and Ng[32] or Curran and
Clark[40] use this technique. The results of the CoNLL-2013 shared task eluci-
date, that this model is a pretty good one for NER[117]. NER tools developed
by Florian et al.[55], Klein et al.[78] or Mayfield et al.[87] used Hidden Markov
Models (HMM), along with other approaches. Hammerton[63] even uses a
neural network. All of the above mentioned systems are learning based. When
talking about ML-based NER systems, we need to differentiate between unsu-

7http://www.lt.informatik.tu-darmstadt.de/en/software/germaner
8http://nlp.stanford.edu/software/CRF-NER.shtml
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pervised, semi-supervised and supervised approaches. Obviously a variety of
different techniques exist in each of these fields. According to Erik et al.[117],
a combination of different learning systems has proven to be a good method
for obtaining excellent results. Besides the ML approaches, the literature also
suggests rule-based recognizer, as used by Mikheev et al.[92] and knowledge-
based NER tools. DBPedia Spotlight9 developed by Daiber et al.[41], which
is discussed in more detail in Chapter 4.1.2.2, uses DBPedia10 as a resource to
identify NEs.

2.2.2 NED

During the introduction to this study, Chapter 1.2.5 already briefly introduced
NED. It was defined as the process of linking a NE to an entry in some resource,
which is the correct one for the context of occurrence. When we talk about
linking or disambiguating NEs, the literature often uses the term Named Entity
Linking (NEL) or NED for that task. In this thesis, the term NED is used in
order to describe the task of linking a NE to a semantic function or role.

Manning dedicates a whole chapter in his book Statistical NLP [84, 229 ff.] to
the linking of words to senses. He suggests different techniques for WSD: su-
pervised disambiguation, unsupervised disambiguation as well as a dictionary-
based disambiguation. The same suggestions are made by Jurafsky in his
book Speech & Language Processing [77]. Obviously by applying small changes,
those approaches may be feasible to NED as well. An approach to NED using
Wikipedia as a knowledge base was implemented by Cucerzan[39], incorporat-
ing a Vector Space Model (VSM) for the disambiguation component. Nguyen
and Cao[103] developed a hybrid system, using rule-based techniques in com-
bination with a statistical approach. The novelty of their approach is that the
disambiguation process is incremental and includes several rounds that filter
candidates. Han and Zhao[64] developed a knowledge-based method to NED.
Moro et al.[96] came up with an approach to NED, by merging the two worlds
of WSD and NED.

All of the above mentioned approaches require some external source. This may
be a knowledge base such as Wikipedia in order to perform the disambiguation,

9http://github.com/dbpedia-spotlight/dbpedia-spotlight
10http://wiki.dbpedia.org
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but can be also an ontology. In fact, almost every external resource, adding
semantic information to a NE, can be used for that purpose. This is necessary
because the NEs need to be linked to something, in order to add value.

Listing 2.3: Example sentences to link NE to a knowledge base
− Michael Jordan is a researcher in Computer Science.
− Michael Jordan plays basketball in Chicago Bulls.
− Michael Jordan wins NBA MVP.
− Learning in Graphical Model: Michael Jordan.

Listing 2.3 gives four different example sentences. All four sentences include
the NE Michael Jordan. After a NER has identified Michael Jordan as a
NE and classified it as a person, the NED system needs to link the NE to
a semantic role. A NED system should group the first and fourth Michael
Jordan into one cluster for they both refer to the Berkeley professor Michael
Jordan, meanwhile group the other two Michael Jordan into another cluster
as they refer to another person, the Basketball Player Michael Jordan. Each
cluster then links the NE to one entry in the knowledge base.

The task of NED may be an easy one for human beings. However, for a system
this is a complex and difficult task[64]. This is the reason, why future research
in this field is crucial[44].

2.3 NER & NED in Law

Approaches and techniques to NER and NED in form of recent work has been
presented in the previous section (2.2). This section deals with related work
in terms of NER and NED in the legal domain.

2.3.1 NER

In terms of NER, there is one key issue with portability, the language. Section
2.2.1 already expounded, that a NER system usually just works for one specific
language. Nonetheless, the performance of a NER classifier can be amplified
when developing it for a specific domain. This work deals with the semantic
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analysis and structuring of German legal contracts. Hence, recent work in
NER systems for the legal domain in Germany is crucial.

Developing a NER system for German is a difficult, but well researched task.
German is a wide-spread and comparatively well-resourced language[12]. How-
ever, yet only three notable datasets exist, namely CoNNL-data[117], an ex-
tension to user-generated content by Faruqui and Padó[51] and the NoSta-D
NE dataset[11].

Even though there has been a lot of German NE taggers, there is just one
freely available developed by Benikova et al.[12]. Faruqui and Padó[51] cre-
ated a German NER model for the Stanford NER, which is licensed under
the GNU General Public License. Stanford NER is also known as a CRF
classifier[54]. A NER system based on the MEM for German was developed
by Bender et al.[10]. Chieu and Ng[32] as well as Curran and Clark[40] cre-
ated similar systems for the German language in the course of the CoNNL-2003
shared task. Florian et al.[55] and Klein et al.[78] came up with an approach
to German NER, using a combination of MEM and other techniques. The
CoNNL-2013[11] shared task caused further research in German NER. ExB,
also a system for NER based on German, was implemented by Hänig et al.[74].
This sytem won the CoNNL-2013 shared task.

A huge challenge for German NER tools is the fact, that not only proper
nouns, but all nouns are capitalized. Due to this, the capitalization feature
used in many NE classifiers is rendered less useful than in other Western-script
languages, like English or Spanish[12]. On the other side, adjectives derived
from NEs such as english, are not capitalized in German. This leads to a lower
performance of NER for German than systems for English[11]. The good
performance of English NER in comparison to German NER is also fostered
by the fact, that most work in NLP has been done for English[51].

When dealing with the legal domain, the type system has to be extended.
The categorization into persons, names and organizations, as done in general-
purpose NER systems is not sufficient anymore. Names of laws, of typified
procedures and even of concepts need to be regarded as well[31]. Going further,
classifications of NEs may be differently as well. For instance, countries and
organizations are classified as Legal Persons.
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Listing 2.4: Example of a sentence including NEs in the legal domain
The [ORG Court] is not convinced by the reasoning of the [ORG combined divisions of

the Court of Cassation], because it was not indicated in the [OTH judgment] that
[LGPER Egitim−Sen] had carried out [OTH illegal activities] capable of
undermining the unity of the [LGPER Republic of Turkey].

The example in Listing 2.4 illustrates this classification. In that example,
Egitim-Sen as well as the Republic of Turkey are classified as LegalPersons.
Even though legal informatics is on a growing limb[136], not much research has
been conducted concerning NER in the legal domain. Dozier et al.[47] discusses
NER in legal documents such as US case law, depositions, and pleadings and
other trial documents. Hereby they differentiate between judges, attorneys,
companies, jurisdictions, and courts as NE types. They outline three methods
in their discussion: lookup, context rules, and statistical models. A nested
NER system with neural networks was defined and implemented by Reimers
et al.[112]. The system was developed during the GermEval-2014 shared task
and got inspired by the findings of Collobert et al.[36]. As mentioned, there is
not much more research in terms of NER within the legal domain, though there
has been quite some research about IR and IE for the legal domain. Wyner
et al.[140] have tried to extract arguments from legal cases, by developing a
context-free grammar that allows the expressions of rules to identify those
expressions. A powerful framework, based on Apache UIMA, to classify and
annotate legal texts based on linguistic and semantic features was developed by
Grabmeier et al.[60]. In his dissertation, Walter[135] focused on the extraction
of legal definitions from the federal constitutional court only.

2.3.2 NED

While different languages constitute the major issue with NER systems, an-
other portability problem relates in particular to NED. When developing a
NED system, domain specific knowledge is required. As already discussed in
Section 2.2.2, ML approaches are the state of the art for NED implementa-
tions. Such a system obviously needs to be trained. For that reason, a huge
corpus of relevant (domain specific) training data is required. This is one of
the major problems for NED in the legal domain, in particular for German, as
not many datasets exist[11].
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The literature reveals that most NED systems still use ontologies in order to
enable the linking of NEs. Legal ontologies have been explored and developed
for different purposed and even in various subdomains in recent research. Ajani
et al.[1] came up with Syllabus, a legal taxonomy. Another legal core ontology
LKIF11 was created by Hoekstra et al.[71]. Breuker et al.[24] describe two legal
ontologies in their work, FOLaw by Valente[130], and their own development,
LRI-Core. Cardellino et al.[31] implemented a low-cost, high-coverage system
for NER and NED for legal texts. Thereby, they incorporated the legal LKIF
ontology as well as the YAGO12 ontology. The LegalRuleML ontology [7] aims
to represent machine-readable legal knowledge, with a particular attention to
legal sources, time, defeasibility, and deonic operators. Furthermore a lot of
general purpose ontologies with some legal content exist[31].

11http://www.estrellaproject.org/lkif-core
12http://www.yago-knowledge.org
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3.1 Research Questions

The objective of this study is the development of a prototypical environment
in order to show the semantic content of contracts in a structured way. This
environment is implemented within Lexia, a legal data science environment de-
veloped at the chair "Software Engineering for Business Information Systems"
of the TU München. The Lexia environment is described in detail in Chapter
4.3.1.

In order to achieve these objectives, the thesis orients itself by means of the
following research questions:

1. Which information does a stakeholder want to extract from legal con-
tracts?

2. What are the functional and non-functional requirements of a software
for the analysis of legal contracts?

3. Which NLP technologies can be used, to extract the semantic meaning
of a legal contract? How to combine these technologies into an Apache
UIMA pipeline?

4. How does a prototypical implementation enabling the semantic analysis
of legal contracts look like?

5. How can such a system be integrated into the workflow of potential
stakeholders?

Chapter 7.1 reflects on these research questions and answers them accord-
ingly.
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3.2 Research Method

As already stated in Section 3.1, the major goal of this study is the development
of a prototypical implementation of a component, enabling the analysis of the
semantic meaning of contracts and structuring these accordingly. Hence, this
thesis reports the building process of this software component. In order to be
able to develop a suitable concept for that implementation, this work is mainly
focused to the design science approach shown by Von Alan et. al[133]. They
also describe the behavioral science, which complements the design science
well. The goal of behavioral science is the development and justification of
theories, explaining or predicting issues related to identified business needs.
On the other side, design science aims to develop and evaluate artifacts created
to meed the before mentioned needs. Figure 3.1 reveals a conceptual overview,
that combines design science and behavioral science paradigms to understand
and evaluate IS research.

Figure 3.1: Information Systems Research Framework

Source: [97, p. 21] based on [133]

Even though in terms of this work, no research was conducted to determine
business needs for such an application, during the literature review, those needs
were identified. In order to improve this situation, this study focuses mostly
on the design artifact. Thus, a prototypical implementation of a software
component, to structure legal contracts properly is developed and evaluated.
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The implementation orientates itself on the methodologies, frameworks and
theories discussed during the literature review. The implemented prototype is
evaluated by means of specific evaluation measures. The results obtained prin-
cipally provide additions to the knowledge base, but may eventually also be ap-
plied in an appropriate environment to address the business needs identified.

To attain the basic knowledge required to develop the appropriate concept for
the software component, as a first step a comprehensive literature study was
performed [138]. The results of the literature study have been the following:

• Develop an overview of NER, its several forms and processes, as well as
the terminologies used.

• Develop an overview of NED, its several forms and processes, as well as
the terminologies used.

• Learn how NER and NED can be combined and integrated into an
Apache UIMA pipeline.

• Discover and access NER and NED frameworks and systems that can be
used for the semantic analysis of legal contracts.

• Discover and access visual frameworks that can be used to properly struc-
ture legal contracts.

In the course of this literature review, various sources such as conference pa-
pers, journals, books, blogs and reputable online pages were consulted. To ac-
cess the relevant literature, online platforms such as the following were used:

• Google Scholar,

• Web of Science,

• Institute of Electrical and Electronics Engineers (IEEE) ,

• Online Public Access Catalogue (OPAC) ,

• and Google Books

Only primary literature were used during this literature review. The desired
outputs of this literature review has been:

• an overview of related work,
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• a set of requirements for such a software component, and

• a set of existing approaches to NER and NED
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This chapters deals with crucial preparative steps for the prototypical imple-
mentation to semantically analysis and structure legal contracts. Section 4.1
discusses the different techniques to NER along with specific tools. Certain ap-
proaches to NED are explained in Section 4.2. These two sections also select
freely available tools for the prototypical implementation. Since this imple-
mentation is based on already existing systems, those are explained in Section
4.3. To be able to develop the software component, requirements have to be
elicited. This is done in Section 4.4. Based on the requirements analysis, a
suitable software architecture is designed in Section 4.5.

4.1 Concepts of Named Entity Recogntion

4.1.1 Rule-based

The simplest approach to NER is based on rules. This is not surprising, as
rule based approaches are still pre-dominant in many NLP tasks[33]. Rule-
based NER approaches are broadly known as handcrafted approaches. This
is because these systems are built by hand and rely heavily on the intuition
of their human creators[22]. Such a system extracts the NEs by means of
hard-coded rules. The rules are either defined within the source code of such
an application or by means of a specific rule language, like Apache UIMA
Rule-based Text Annotation (RUTA).

The New York University developed Proteus, a rule-based NER system[61]. It
is implemented in Lisp and mainly composed of a large number of context-
sensitive reduction rules. Another example has been implemented by Waltl
et al.[136]. Based on a collaborative data science environment (see Section
4.3.1 for further information) and a large corpus from German tax law, they
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demonstrate the extraction of semantic information. Their implementation
uses Apache Ruta to express determined patterns. These pattern are used
to extract the desired information. Even though this is no NER, even more
complex structures are extracted. They were able to extract constitutions like
legal definitions. Maat and Winkels[42] use Regular Expressions (regex) to
extract sentences based on their occurring context within a law.

Listing 4.1: Example of rules for rule-based NER
− Title Capitalised_Word −> Title Person_name
− Correct:
− Mr. Jones
− Gen. Schwarzkopf
− Incorrect:
− Mrs. Field’s Cookies (A corporation)
− Mr. Ten−Percent (nickname for a corrupt third−world official)

− Month_name number_less_than_32 −> Date
− Correct:
− February 28, July 15
− Incorrect:
− Long March 3 (a Chinese Rocket)

Some example rules from Proteus are shown in Listing 4.1. As the listing
reveals, rule-based approaches entail drawbacks. In fact, for almost every NE
rule there will be numerous exceptions. Given the usual time and resource
constraints, it is almost impossible to code for every exception which one can
think of, leaving aside exceptions which don’t become apparent until one has
run a test[22]. Furthermore the handcrafted approach implicates issues with
the expense. It is pretty expensive to get a system up and running, requiring
programmers with substantial experience in computational linguistics as well
as domain knowledge. Thus, legal scientists are inalienable[136]. All this effort
is obviously wasted, once the system shall be ported to either a new language
or a new domain. Even when remaining in the same domain and language,
adding new entity types to a document causes a rule-based NER system to
fail[108].
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4.1.2 Knowledge-based

The ecosystem of linked data develops[17] and so do the mutual rewards for
structured and unstructured data providers alike. An increasing discover-
ability, reusability, and hence the utility of information can be achieved by
higher interconnectivity between information sources[90]. By connecting un-
structured information in text documents with linked data, records from the
internet can be utilized, for instance to enhance information retrieval or to
enable faceted document browsing[68, 91]. This is the reason for the develop-
ment of knowledge bases and ontologies such as DBpedia or YAGO13. These
public data infrastructures for a large, multilingual, semantic knowledge graph
can be utilized to perform NER.

Systems applying such an approach differ from common NER tools quite a
bit, depending on their complexity. There are complex implementation like
Artequakt, which combines expertise and experience from several projects (for
further information see Section 4.1.2.1), or DBpedia Spotlight (for further
information please refer to Section 4.1.2.2). These systems incorporate typical
NLP methodologies into the NER task. Tokenizer, lemmatizer, POS-tagger or
other techniques are used for pre-processing, before a single token is requested
against the knowledge base. The Uniform Resource Identifier (URI) of one-to-
many resources is returned. Afterwards the token is linked to that URI, which
corresponds to the recognition of a NE. A huge benefit of such an approach is
the information attached to the knowledge base[90]. This is not just beneficial
for eventual visualizations, but also for the case of ambiguity. In the event
of a returned tuple of URIs, a system may perform a classification based on
the context it knows, to select the proper resource. Other systems do not
solve those ambiguities. A very simple and straight-forward approach to a
knowledge-based NE recognizer would be a simple annotator. Given a textual
representation, an annotator can sequentially process each word and match it
with the knowledge base. By doing so, the majority of the NEs within that text
are identified, while having the issue of extracting superfluous information.

The following two sections (4.1.2.1 and 4.1.2.2) introduce two examples of
knowledge-based NER representatively.

13http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/
research/yago-naga/yago

25

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago


4 Concepts & Design

4.1.2.1 Artequakt

Artequakt is a project linking a knowledge extraction tool with an ontology to
achieve continuous knowledge support and guide IE. It mainly tries to identify
NEs along with their existing relationships using ontology relation declarations
as well as lexical information. Hereby Artequakt combines experience and
expertise of three projects: (1) Artiste14, (2) The Equator IRC15, and (3) The
AKT IRC16. The project is developed for the artists and paintings domain[2].

In the first step, they created an ontology for that specific domain. After-
wards, a huge variety of IE tools has been used to populate that ontology
with information extracts from online documents. The populated ontology is
stored in a knowledge base, while the stored data is consolidated. The sec-
ond step consisted of the development of narrative construction tools to query
the knowledge base through an ontology server to search and retrieve relevant
facts.

Figure 4.1: The Artequakt Architecture

Source: [2]

Artequakt’s architecture unites three key areas, as shown in Figure 4.1. The
knowledge extraction tools collect information items along with sentences and

14http://users.ecs.soton.ac.uk/km/projs/artiste
15http://www0.cs.ucl.ac.uk/research/equator
16http://www.iam.ecs.soton.ac.uk/projects/akt
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paragraphs from web documents. These information fragments are passed to
the ontology server along with metadata derived from the ontology. Second,
the information is consolidated and stored by the ontology server. The Arte-
quakt server takes user requests to generate the requested content via a web
interface. Even though the artists and paintings domain is far away from the
legal domain, this approach can be easily applied to arbitrary domains[2] and
thus to the legal domain as well.

4.1.2.2 DBpedia Spotlight

DBpedia is an interlinking hub in the web of data, enabling access to many
data sources in the linked open data cloud[90], licensed under the GNU license.
DBpedia contains about 3.5 million resources from Wikipedia. The majority
of the resources is classified into a consistent cross-domain ontology. The
ontology is populated with classes such as places, persons or organizations.
Furthermore, fine-grained classifications like soccer players or IT companies is
existing. Resources possess attributes as well as relations to each other[41].

Mendes et al.[90] developed DBpedia Spotlight Annotator to enable the linkage
of web documents with that hub. It is a system to perform annotation tasks
on text fragments, such as documents, paragraphs or sentences, provided by a
user. Hereby, the user wishes to identify URIs for resources mentioned within
that text. This can be seen as a typical NER system.

The system is based on an approach with four different stages. The first
stage recognizes the phrases in a sentence that may indicate a mention of a
DBpedia resource, this stage is called spotting. In the next step candidates
are selected, that may map the spotted phrase. In the most cases a bundle of
resources is identified and hence, an ambiguity is current. This is when the
disambiguation stage takes place. It tries to discern the context of the spotted
phrase in order to decide on the best choice amongst the candidate resources.
Eventually the annotation takes place. Within that stage, the user is able to
inject configuration parameters to satisfy its specific needs[90].
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Spotting

The spotting algorithm uses an extended set of labels in a lexicalization dataset
to create a lexicon for spotting. This lexicalization set is created by utilizing
the graph of labels, redirects and disambiguations in DBpedia. This lexicon
associates multiple surface forms to a resource and interconnects multiple re-
sources to an ambiguous label. The labels used for the lexicon are created
from Wikipedia page titles. Textual references are extracted in the form of
wikilinks within Wikipedia. The actual implementation for the spotting algo-
rithm is based on the LingPipe Exact Dictionary-Based Chunker[4].

Candidate Selection

For the candidate selection, the DBpedia lexicalization dataset is used to de-
termine candidate disambiguations for each surface form. This step is crucial,
since it offers the possibility to narrow down the space of disambiguation pos-
sibilities. However, this step has a downside as well as a benefit. Obviously,
narrowing down the candidates for the disambiguation improves the time per-
formance. On the other side, performing a too aggressive candidate selection
may reduce recall. For that reason, Mendes et al.[90] decided to apply mini-
mal pre-filtering but introduce a post-disambiguation stage where the user can
define his configuration for appropriate results[41].

Disambiguation

The DBpedia resource occurences are modeled in a VSM where each DBpedia
resource is a point in a multidimensional space of words. In comparison to
classical IR systems where the Term Frequency (TF) measures the relevance of
a term in a document, TF represents the relevance of a word for a given resource
in the model of DBpedia. Furthermore, as common to Term Frequency-Inverse
Document Frequency(TF-IDF), the Inverse Document Frequency (IDF) weight
depicts the general importance of the word in the whole DBpedia corpus.
However, when dealing with the importance of a word for disambiguation, it
turned out that IDF fails to capture adequately[41]. This is why the Inverse
Candidate Frequency (ICF) was introduced. ICF is based on the explanation
of Deng et al.[43]. The discriminative power of a word is inversely proportional
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to the number of DBpedia resources it is associated with, which is the intuition
behind ICF. In what follows, the mathematical definition of ICF is provided.

Let Rs be the set of candidate resources for a surface form s. Let n(wj) be the
total number of resources in Rs that are associated with the word wj. Then
ICF is defined as:

ICF (wj) = log(
|Rs|
n(wj)

) = log(|Rs|)− log(n(wj)) (4.1)

To measure uncertainty in probability distributions, entropy has been com-
monly used[123]. With regard to a word’s association with DBpedia resources,
the entropy of a word can be defined as:

E(w) = −
∑
i∈Rs

P (ri|w)log(P (ri|w)) (4.2)

If that word w is connected to those resources with equal probability P (r|w) =
1/n(w), the maximum entropy is transformed to E(w) = log(n(w)). The
maximum entropy is used to approximate the exact entropy in the ICF formula.
This is, since generally the entropy tends to be proportional to the frequency
n(w).

Having now that VSM representation of DBpedia resources with TF*ICF
weights, the disambiguation task can be seen as a ranking problem with the
objective to rank the correct DBpedia resource at the first position. The can-
didates resources are ranked according to the similarity score between their
context vectors and the context surrounding the surface form. For the simi-
larity measure, cosine is used[41].

Configuration and Annotation

DBpedia Spotlight uses a different approach in terms of configuration than
most systems. While many of the current approaches for annotating content
tune their parameters to a specific task, DBpedia generates a number of metrics
to inform the users and let them decide on the policy that best suits their
needs. This introduces more flexibility to various use cases in comparison to the
classical approach[90]. The system offers five configuration parameters. First
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the user can decide on a target set of resource types, based on the DBpedia
ontology. In order to avoid the annotation of rare resources, the user can
specify a resource prominence. Due to the fact that the disambiguation process
returns a similarity score, it can be used to configure topic pertinence. Another
configuration can be done in terms of contextual ambiguity. Eventually, the
user can define a disambiguation confidence[90].

Usage of DBpedia Spotlight

The DBpedia Spotlight is available in two forms: a web application as well as
a web service.

Figure 4.2: The UI of the DBpedia Spotlight Web Application

Source: Own screenshot

The UI of the web application is shown in Figure 4.2. The web application
serves as a demo to test and visualize the results of different service functions.
The user is able to enter text into a text box. On user’s request, the system
highlights the surface forms and creates associations with their corresponding
DBpedia resources. Additionally, a separate disambiguation stage can be exe-
cuted. In this case, the system bypasses the spotting phase and only annotates
selected phrases[90].

The web service of DBpedia Spotlight facilitates the integration into exter-
nal applications. In fact, two instances of the web service exist. There is a
RESTful (Representation State Transfer) and a Simple Object Access Protocol
(SOAP) web service. A user can access both, the annotation and disambigua-
tion process and define all existing configuration parameters. The web service
return different formats such as Hypertext Markup Language (HTML), XML

30



4 Concepts & Design

or JavaScript Object Notation (JSON)[41]. The web service of DBpedia is
explained in Chapter 5.1.3.2 during the implementation phase of this work.

4.1.3 Machine Learning

As already discussed in previous chapters, the main task of a NER system is
to recognize previously unknown NEs. An ability like this, hinges upon recog-
nition and classification rules triggered by distinctive features associated with
positive and negative examples[100]. As described in Section 4.1.1, early stud-
ies were mostly based on handcrafted rules. Recent work however focuses on
ML techniques. The most recent NER approaches rely on Supervised Machine
Learning (SML). By means of SML, such a system either automatically induces
rule-based systems or a sequence labeling algorithm starts from a collection of
training data. SML has one common issue that is, training data is necessary in
order to train the classifiers. Even though a variety of automatic approaches
to create training data exist, manual work is always necessary. Due to this,
handcrafted rules remain the preferred technique when no sufficient training
data is available[121]. The fact that five out of eight systems were rule based in
the MUC-7 competition[100], but sixteen presented systems at CoNNL-2013
dedicated to ML, acknowledges this assumption.

In terms of ML, different methodologies exist. As already mentioned, SML is
one of the possibilities. Semi-supervised Machine Learning (SSML) as well
as Unsupervised Machine Learning(USML) complete the round of ML ap-
proaches. The following sections deal with these three approaches in more
detail.

4.1.3.1 SML

The idea of SML is to study the features of positive and negative examples of
NEs over a large training collection of annotated documents and design rules
that capture instances of a given type in unannotated documents. Hereby
different techniques can be used, such as HMM[16], Decision Trees (DT)[120],
MEMs[23], Support Vector Machines (SVM)[6] or CRFs[89]. All these variants
utilize the same concept. A large annotated corpus is analyzed to memorize a
list of entities. This list is transformed into rules to detect such entities based
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on a set of distinctive and discriminative features. These rules are then applied
to new documents in order to extract similar entities.

When developing a ML-based NER system, an evaluation is crucial in order to
be able to measure the performance of such a system. Furthermore, different
systems should be comparable as well. The concept of baselines is used for this
purpose. A baseline is a method that uses heuristics, simple summary statis-
tics, randomness or ML to create predictions for a dataset. This prediction is
used to measure the baseline’s performance, such as accuracy, precision and
recall. The resulting metric will become what any other system is compared
against. A common baseline SML method consists of tagging words of a test
corpus when they are annotated as entities in the training corpus[100].

The main intuition behind this work is to incorporate NER approaches in
order to create a prototypical implementation for the semantic analysis and
structuring of legal contracts. Hereby, also SML-based NER approaches shall
be incorporated. However, details of all ML possibilities along with their
detailed techniques are not the focus of this thesis. Hence, the above described
techniques are not discussed in detail. Nevertheless, selected NER tools are
elucidated along with the techniques used by those in the following section. For
further information about the other techniques, please refer to the references
above.

4.1.3.1.1 Approach to NER of Cardellino et al.

Cardellino et al.[31] developed a system to link NEs to a structured knowledge
representation, the LKIF ontology[59]. Hereby, they linked the LKIF ontology
to the YAGO ontology[126] and through it, taking advantage of mentions of
the NEs in Wikipedia. Their system is divided into two tasks. First, they
recognize NEs and classify them into a class. This is how NER is defined
for this work. Second, they link the NEs to YAGO URIs, which is NED. This
section describes their work in order to enable NER, while the discussion about
their NED implementation takes place in Section 4.2.1.3. In order to do so,
first they manually linked the LKIF ontology to the YAGO ontology, before
training their classifiers for NER and NED.

LKIF is an abstract ontology describing a core of legal concepts. It consists
of different modules with high-level concepts, and also three modules with
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law-specific concepts[59]. The ontology constitutes a total of 69 law-specific
classes. However, LKIF is not populated with real-world entities[31]. This is
where YAGO captures an important role. It is a knowledge base extracted
from Wikipedia, WordNet17, and GeoNames18. Furthermore, it is linked to
the DBpedia ontology and to the SUMO ontology19. Thereby it covers knowl-
edge of more than 10 million entities, while containing about 120 million facts
about these entities. According to Cardellino et al.[31], this information was
evaluated to be above 95% accuracy.

The mapping between the two ontologies was carried out manually and as
follows: for each LKIF concept, they try to find an equivalent in YAGO. If
there is not such an equivalent, then they look first for a subclass, then for
a superclass. When an equivalent concept has been found, they establish the
alignment using the OWL primitives equivalentClass and subClassOf. Next
they navigate YAGO to visit the related concepts and to check whether they
could be aligned with other LKIF concepts. Since all children nodes of a
connected node are connected by their most immediate parent, all children
nodes of the aligned YAGO nodes are effectively conntected to LKIF. Hence,
LKIF acts as the backbone of the newly created ontology, which can be thought
of an LKIF extension, including the alignment of the concepts with YAGO
ones[31]. They performed this matching not on the base of relations, but
only classes. The process ended up in 30 classes from LKIF, which could be
mapped to a YAGO node. From YAGO, 47 classes were mapped to LKIF,
with a total of 358 classes considering child nodes. This summed up in a total
of 4.5 million Wikipedia mentions. In order to create their corpus, Cardellino
et al. extracted a dump of the Englisch Wikipedia. After several preprocessing
steps, they extracted those sentences, that contained at least one mention of a
named entity. In that process, a NE is a mention that has a link to an entity
of YAGO, that belongs to the newly created ontology[31].

Now they were able to build different NER classifiers. Hereby they trained
a SVM as well as the StanfordNER. StanfordNER could not handle the level
of granularity of their ontology though. Furthermore, they learned a neural
network with one hidden layer. This approach ended up in a NER classifier,
for the legal domain in Englisch. The evaluation of their classifiers was done

17http://wordnet.princeton.edu
18http://www.geonames.org
19http://www.adampease.org/OP
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by means of the test portion of the Wikipedia corpus, but also on a judgment
corpus. Therefore Cardellino et al. manually annotated excerpts from 5 judg-
ments of the European Court of Human Rights(ECHR). They achieved a F1

of 0.24 for the SVM and 0.86 for the neural network over six NE classes on the
Wikipedia corpus. When sticking to the legal domain, by evaluating on the
judgment corpus, only a F1 measure of 0.56 for StanfordNER and 0.47 for the
neural network was reached. This reveals also the entitlement of this work, to
ground a base for further research in the field of NER and law.

4.1.3.1.2 GermaNER

GermaNER is a generic German NE tagger that can be readily used from com-
mand line or integrated into any NLP application to automatically tag NEs.
For the latter sense, the tagger is available as an Apache UIMA component.
A crucial contribution to the NER community has been made, due to the fact
that this system is under a permissive license that allows academic and com-
mercial use without licensing fees. According to Benikova et al.[11], this is one
of the sole freely available NER tools.

This system integrates a CRF[80] for sequence tagging. CRFs are scalable,
highly accurate and easy to use as the training data can be prepared without
the need of ML experts[70]. The CRFsuite by Okazaki[105] has been integrated
into a clearTK UIMA framework[13]. This enables more convenient training,
feature annotation, classification and entity extraction[12]. Hereby the system
is highly configurable, as it allows the user to either use the built-in model,
or train it with new training data and feature sets, while the standard model
is optimized with the existing feature set. Furthermore GermaNER offers a
technique of data chunking. This allows users with powerful machines to use
larger data chunks, while users with weaker machines can still run the system
with smaller data chunks[12].

A nice benefit of this system is its NER tagger pipeline. The pipeline consists
of distinct components integrated into an UIMA[52] pipeline written in the
Java programming language. This allows other developers and researchers to
easily integrate the system into other NLP applications, for instance to use
GermaNER as a reasonable baseline system to further expand training data
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Figure 4.3: The tagger pipeline of GermaNER

Source: [12]

sets using Active Learning (AL) and adaptive annotation approaches[12]. Fig-
ure 4.3 illustrates this pipeline. The first component conducts tokenization and
segmentation on the training and testing data. The results of this component
are stored in a UIMA Common Analysis System (CAS) object. Such a CAS
object contains the currently processed data as well as meta information[52].
Next, the feature extraction and annotation component follows. Different fea-
tures are obtained by the feature extractors. Hereby the features are received
either from the token and surrounding tokens, such as word and character
n-grams, or the features are supplied from external sources, such as gazetteer
lists or lists induced by unsupervised methods. In doing so, this component
internally annotates the document accordingly. A further component is the
training element. It produces a CRFsuite classifier model based on the anno-
tated features. The final component is a classifier component where unseen
documents, which get feature annotated in a similar way as the training data,
are subject to prediction of NEs[12]. This NER tagger is designed in a way,
that each mentioned component can be replaced or modified easily.

GermaNER only accepts the CoNLL-2013 format as input. Such a file contains
one token per line, while sentence should be separated by a blank line. The
output of the tagger is a tab separated file. The first column corresponds to
the same as in the input file. In the second column, the predicted NE tag

35



4 Concepts & Design

is stored in form of the Beginning-Inside-Outisde (BIO) scheme. The BIO-
scheme suggest to learn classifiers that identify the beginning, the inside and
the outside of the text segments[111]. An exemplary output in that scheme is
shown in Table 4.1.

Table 4.1: Exemplary output of GermaNER
Token Entity Type
Dan B-PER
Jurafsky I-PER
is O
a O
leading O
researcher O
in O
NLP B-OTH
at O
the O
Stanford B-ORG
University I-ORG

In the development of a SML-based NER system, the creation and feature
selection is crucial[12]. GermaNER uses a variety of features, whereby a con-
figuration file is used to enable and disable various available features. In the
remaining paragraphs of this section, the features, consolidated into groups,
incorporated by GermaNER are presented.

Character and Word Features

The first feature group consists of the first and last character uni-, bi-, and
trigrams of the current token. This may be for instance prefixes and suffixes,
time-shifted from -2 to +2. Another influential feature for the system are
character category pattern features, which are extracted from the current token
based on unicode categories20. Moreover, the words themselves are used as
features in a window between -2 and +2[12].

20http://www.unicode.org/notes/tn36/
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NE Gazetteer

The gazetteer features used in GermaNER were created through the assembling
of several lists containing NEs. Besides other gazetteers such as a personal
name list extracted with the NameRec tool from the ASV toolbox by Biemann
et al.[14] from large, publicly available corpora, several Freebase lists were
used for this purpose. The foremost lists are merged into a GazetteerFeature,
whereas the Freebase lists build an own feature FreebaseList. Freebase[20] is
an English community curated database containing well known places, people
and things under CC-BY license.

POS

GermaNER utilizes automatically induced POS tags as POS features. Clark[34]
created a system which clusters words into different classes in an unsupervised
manner, based on distributional and morphological information. The POS
induction of GermaNER is based on Clark’s system. 10 million sentences
from the Leipzig Corpora Collection21[114] were used to induce 256 different
classes[12].

Word Similarity

The four most similar words of the current token, received from the JoBim-
Text22[15] distributional thesaurus database, made available in a window of
size 2, form this feature group[12].

Topic Clusters

A fixed number of topic clusters, most of which are quite pure in terms of
syntactic and semantic classes, is used. By applying LDA topic modeling23

to above mentioned JoBimText German distributional thesaurus, using the
thesaurus entries as documents for LDA, this topic clusters were created. This
is similar to the approach in the ExB system by Hänig et al.[74]. Benikova

21http://www.corpora.uni-leipzig.de
22http://www.jobimtext.org
23http://gibbslda.sourceforge.net
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et al. have generated different sets of these clusters, each for all words and
for uppercase words only, and use the number of its most probable topic as a
token’s feature. This is time-shifted in a window range of -2 to +2[12].

Other Features

Two further features were implemented in GermaNER. The position feature
reflects the position of the token in the sentence. A differentiation between
uppercase and lowercase, the beginning of a sentence, camel case and all up-
percase is made with the case feature, time shifted between -2 and +2[12].

4.1.3.2 SSML

The main concept behind SSML is called bootstrapping, involving a smaller
degree of supervision, such as a set of seed records, for starting the learning
process[100]. A example is a system targeted at law names, asking the user
to provide a small number of example names. Now the system searches for
sentences containing these names and attempts to identify some contextual
clues common to the given example names. Then, the system tries to find other
instances of law names that appear in similar contexts. The learning process
is then reapplied to the newly found examples, so as to discover new relevant
contexts. A large number of law names and a huge number of contexts will
eventually be gathered, by repeating this process. Nadeau et al.[101] report
performances that rival baseline SML approaches, in recent experiments in
SML-based NER. As in SML, SSML needs this seed set in order to start the
learning process. For this bootstrapping process, classic rule-based approaches
can be used to create seed records[22].

Different techniques to implement a SSML-based NER system exist. Brin[26]
utilizes regex in order to generate list of book titles paired with book authors.
These regex implement the lexial features which are used for the generation of
book titles paired with book authors. The technique starts with seed exam-
ples like "Dan Jurafsky, Speech & Language Processing" and uses fixed lexical
control rules, like a regex to describe a title. Many web sites conform to a ac-
ceptable common format across the site. This fact it utilized in the approach
of Brin. Once a given web site is found to contain seed examples, new pairs
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can often be identified using simple constraints. Such an constraint may be
the presence of an identical context around an interesting pair. As an example,
having the passage "Speech & Language Processing, written by Dan Jurafsky"
would enable finding, on the same web site, "Foundations of Statistical Natural
Language Processing, written by Christopher D. Manning".

Collins and Singer[35] parse a complete corpus in search of candidate NE pat-
terns. Hereby, a proper name followed by a noun phrase in apposition may be
a pattern. An example of a pattern like this may be "Tim Cook, the CEO at
Apple Inc.". Such a pattern can be identified by using POS tagger. Patterns
are kept in pairs {spelling, context} where spelling associates to the proper
name and context refers to the noun phrase in its context. Again starting with
an initial seed of spelling rules, the candidates are determined.

Listing 4.2: Seed example of spelling rules
Rule 1: if the spelling is San Francisco then it is a Location
Rule 2: if the spelling contains Mr. then it is a Person
Rule 3: if the spelling is all capitalized then it is a law name

An example of such a seed set of spelling rules is shown in Listing 4.2. Those
candidates, satisfying a spelling rule are classified accordingly and their con-
texts are stored. A set of context rules is created by storing the most frequent
contexts found. Repeating this process over and over, contextual rules can be
used to find further spelling rules.

Mutual bootstrapping that consists of growing a set of entities and a set of
contexts in turn, was introduced by Riloff and Joness[115]. Contrary to work-
ing with predefined candidate NEs, they start with a few seed entity examples
of a given type. All patterns found around these seeds are accumulated in a
large corpus. Then the found contexts are ranked and used to find new enti-
ties. A similar approach has been developed by Chucchiarelli and Velardi[38].
However, they use syntactic relations to discover more accurate contextual
evidence around the entities. Furthermore, they waive the idea of human gen-
erated seeds, but incorporate existing NER systems for the creation of their
seeds.

SSML-based NER approaches are able to reach performance measure similar to
SML-based techniques, while starting with a seed of 10 examples and resulting
in one million entities with a precision about 88%[107]. A key issue when
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working with SSML and thus, with bootstrapping is the selection of unlabeled
data[100]. Heng and Grishman[76] figured that the selection of documents
using IR-like relevance measures and selection of specific contexts bring the
best results.

A quite new approach to SSML is Active Machine Larning (AML). The intu-
ition behind an AML procedure is to overcome the necessity of having a seed
set. The training data is created in an interactive loop with the support of
an oracle. This oracle may be a human expert, being able to identify NEs.
The system asks queries in the form of unannotated instances to be labeled
by the human annotator. The predictive model then can be trained by those
labeled instances. While recurring this process, it is likelier that the classifier
will perform well. This is because of the hypothesis behind AML, that is if
the learning algorithm can select the data from which it learns, it will perform
well with a small training set[122, p. 11 ff.].

This section already introduced some techniques to approach SSML-based
NER. However, no specific NER system relevant for this work was found,
which would be worthy to introduce.

4.1.3.3 USML

In general USML is a clustering task[100, 84]. Clustering is an unsupervised
data-analytics technique to identify hidden patterns in data[69]. Of course this
can be applied to NER as well. For example, a system can try to gather NEs
from clustered groups based on the similarity of context. Other techniques
exist also. Most of the approaches rely on lexial resources, on lexical patterns
and on statistics computed on a large unannotated corpus. This is necessary
because simple clustering of NEs indeed create groups, but the system cannot
know which type a certain group belongs to.

The problem of labeling an input word with an appropriate NE type is studied
by Alfonseca and Manandhar[3]. They take NE types from WordNet. The
methodology is to assign a topic signature to each WordNet synset by merely
listing words that frequently co-occur with it in a large corpus[100]. Now,
the word context of a given word in a given document is compared to type
signatures and classified under the most similar one.
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Hearst[67] described the method to identify hyponyms and hypernyms. This
method is applied by Evans[50] in order to recognize potential hypernyms of
sequences of capitalized words appearing in a document.

NEs often occur synchronously in several news articles, whereas common nouns
do not[124]. Shinyama and Sekine also noticed a strong correlation between
being a NE and appearing punctually and simultaneously in multiple news
sources. With that in mind, identifying rare NEs in an unsupervised manner
also in combination with other NER techniques can be useful and was applied
by them.

Even though some research in USML-based NER systems has been done, yet
these approaches do not reach baseline performances as SML or SSML does[77].
As a consequence, no USML-based NER approach is implemented or utilized
in this work.

4.1.4 Templated

In the course of this study, a new approach to NER in contracts is developed.
This approach is called templated NER. The creation of a contract is mainly a
manual and intensive task. Legal practitioners need to be able to understand
requirements of a deal to define a suitable contract[116]. However, often ex-
isting contracts are refined, instead of creating a new contract from scratch.
Over time, this lead to the existence of contract templates. For simple cir-
cumstances such as a rental deal, contract templates exist. The legal expert
only needs to fill the placeholders with the respective information. Contract
creation via templates is pretty common today[93]. Having this in mind, NER
can be achieved easily on contracts, defined by a template, as long as the
template is at hand as well.

The intuition behind this templated NER approach is that, if we compare an
actual contract with its template, only the populated information remains as
differences. When thinking about relevant information in a contract, mostly
NEs emerge. With other words, when a contract template is filled in the
majority of information are NEs. Of course this method basically just picks
off the low hanging fruits, nonetheless it is a valid NER system for that specific
kind of contracts.
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The implementation of such a technique is expounded in Chapter 5.1.3.3, dur-
ing the implementation phase. Moreover, the disambiguation of NEs towards
a semantic model can be achieved with such an approach as well. The idea
behind this is discussed in Chapter 4.2.3.

4.1.5 Comparison

The previous section discussed the different approaches to NER. This section
compares the different techniques by means of different criteria. Each criteria is
assessed with either low, medium or high, whereby the assertion depends on the
actual criteria. Moreover, none can be used if the criteria is not applicable.

Table 4.2: Comparison of NER approaches
Criteria RB KB SML SSML USML T
Language
Porta-
bility

Low High Medium Medium High High

Domain
Porta-
bility

Low Medium Medium Medium High Low

Required
Training
Data

None None High Medium Low None

Expert
Knowl-
edge

High Medium Low Low Low Low

Manual
Work

High Medium Medium Low Low Low

System
Com-
plexity

Low Medium Medium High High Low

Table 4.2 gives an overview about the comparison of the different approaches
to NER. The newly introduced abbreviations for this table are as follows:
RB is refers to rule-based, knowledge-based is referred to KB, and T means
templated. A rule-based system seems to be not too complex, while it can
be created without training data. However the downside of such an approach
is its rigidity. The templated approach is very portable in terms of language,
because a template just needs to be translated. On the other side, domains
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cannot be changed that easy. Looking at the table above, templated NER
seems to be a perfect fit. Nonetheless, it must be remarked, that this approach
only works when templates are available, while having the limitations of the
NEs marked as such in the template. Knowledge-based approaches look quite
promising as well. They have decent portability capabilities, while requiring
some expert knowledge in combination with manual work. As long as no ML is
incorporated, training data is not necessary either. Speaking about ML-based
approaches, USML seems to be a good-looking option, as long as the fact is
neglected, that it is very hard to perform. Yet SML-based approaches are
superior, but the trend may switch over to SSML.

For this study, three different concepts of NER shall be implemented. Having
three main classes of NER approaches, ML-based, knowledge-based and tem-
plated, barring rule-based approaches, one technique out of each class is used.
Due to the fact that research is highly advanced in rule-based NER systems,
along with the fact that the chair of "Software Engineering for Business In-
formation Systems" of the Technische Univeristät München already performed
quite some research in this field, such an implementation is avoided. Two freely
available system are selected, GermaNER is used to represent a SML-based
NER system and DBpedia Spotlight for the sake of knowledge-based tools.
Obviously the templated NER approach is implemented in the course of this
thesis and thus also integrated into the prototypical implementation.

4.2 Concepts of Disambiguation

The major goal of this study is to semantically analyze and structure legal
contracts. For this purpose only NEs shall be used. Recognized entities are
subject to be linked to types and attributes of a semantic model, describing a
contract. Section 4.5 as well as Chapter 5.1.4 discuss this approach in detail.
This disambiguation process can be achieved by utilizing NED. WSD was
already introduced in Chapter 1.2.4. It was defined as the process of linking a
word to a sense, which is the correct one for the context of occurrence. NED
and WSD both address the lexical ambiguity of natural language. However
while the two tasks are pretty similar, they differ in a fundamental aspect. In
NED the textual mention can be linked to a NE which may or may not contain
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the exact mention, while in WSD there is a perfect match between the word
and the sense[96].

Listing 4.3: Example sentence to illustrate the difference between NED and
WSD

Thomas and Arjen are strikers playing in Munich.

The sentence in Listing 4.3 makes clear how interwined but also different the
two approaches are. Striker and play are polysemous words which can be dis-
ambiguated by selecting the soccer game playing sense of the two words in a
dictionary. But Thomas and Arjen are just partial mentions, which have to
be linked to the appropriate entries in an external resource, that is Thomas
Müller and Arjen Robben. Furthermore, both approaches differentiate in terms
of the kind of inventory used for the linking process. WSD usually uses either
dictionaries or thesauri, while NED utilizes knowledge bases such as encyclo-
pedias or ontologies[96]. These differences may be the reason why the research
community has so far approached the two tasks separately.

On the other side, current research in knowledge acquistion is trending towards
the seamless integration of encyclopedic and lexical knowledge into structured
language resources[73]. BabelNet24[102] reinforces this finding. Hovy et al. [73]
establish the hypothesis, that lexical knowledge used in WSD is also useful for
tackling NED, and vice versa. Going further, even though NED and WSD
differ from each other, the techniques used by them may be shared as well.
Having the goal of this work in mind, obviously WSD approaches may be
feasible as well. For that reason not just NED approaches are described in this
chapter, but also WSD methodologies.

Depending on the specific task different knowledge based NED procedures ex-
ist. Due to the recent collaborative creation of large semi-structured resources,
such as Wikipedia, and structured knowledge resources built from them[73],
such as BabelNet[102], DBpedia[8] or YAGO[72], NED based on these re-
sources has emerged[110]. Hereby the recognized NEs are linked to the most
suitable entry in such a knowledge base. Moreover, such a knowledge base
can be also an ontology or in particular for WSD dictionaries or thesauri.
Concerning the disambiguation, different methodologies exist. As with almost

24http://babelnet.org
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each NLP task, ML techniques exist. It can be distinghuised similar to NER
between SML, SSML, and USML. However, Chapter 2 showed, that not much
research has been done in terms of NED via SSML. In the following sections,
different techniques to tackle NED (and WSD) are described. Furthermore,
the templated NER approach from Section 4.1.4 can be enhanced to enable
templated NED (Section 4.2.3).

4.2.1 SML-based NED

As with SML in NER, a corpus needs to be available for training. For NED
it has to be a disambiguated corpus. The training data consists of a set of
exemplars where each occurrence of the ambiguous word w is annotated with a
semantic label, it’s contextual sense sk. Due to this, supervised disambiguation
is an instance of statistical classification. Hence a classifier has to be build
which correctly classifies new cases based on their context of use ci[84].

Table 4.3: Notational conventions for SML-based NED
Symbol Meaning
w an ambiguous word
s1, ..., sk, ..., sK senses of the ambiguous word w
c1, ..., ci, ..., cI contexts of w in a corpus
v1, ..., cj, ..., cJ words used as contextual features for disambiguation

An overview of this notation used for the remainder of this section is shown
in Table 4.3. Researchers came up with quite a few approaches to address
supervised NED. Two techniques being also highly relevant for statistical lan-
guage processing in general[84], are introduced in the following. The Bayesian
classification by Gale et al.[57] as well as the Information Theory proposed by
Brown et al.[28]. Afterwards, a system developed by Cardellino et al.[31] is
introduced.

4.2.1.1 Bayesian Classification

The Bayesian classification handles the the context of a word as a bag-of-
words. The bag-of-words model is a simplified representation of text used in
NLP and IR a lot. The structure of a text (such as a sentence or a document)
is ignored in a bag of words. The multiplicity is kept, while disregarding any
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grammar or word order[134]. Therefor it integrates information from many
words in the context window[84]. Each word in the context of an ambiguous
word w contributes potentially useful information for the disambiguation task.
A Bayesian classifier performs no feature selection, but combines the evidence
from all features[57].

P (s′|c) > P (sk|c)forsk 6= s′ (4.3)

The Bayes decision rule seen in Equation 4.3 is applied by a Bayes classifier
when choosing a class. Bayes decision rule rule minimizes the probability of
error[48, p. 10-43]. This is true because for each individual case it chooses
the class with the highest conditional probability and hence the smallest error
rate. The value of P (sk|c) is usually unknown, but can be computed using
Baye’s rule shown in Equation 4.4

P (sk|c) =
P (c|sk)
P (c)

∗ P (sk) (4.4)

Hereby P (sk) is the prior probability of sense sk, the probability that an in-
stance of sk is present while knowing nothing about the context. The evidence
about the context updates P (sk) in form of the factor P (c|sk)

P (c)
, which results in

the posterior probability P (sk|c). Since only the selection of the correct class
if of interest, the classification can be simplified by eliminating P (c). Using
logarithms of probabilities makes the computation simpler as well.

s′ = argmax
sk

P (sk|c)

= argmax
sk

P (c|sk)
P (c)

P (sk)

= argmax
sk

P (c|sk)P (sk)

= argmax
sk

[logP (c|sk) + logP (sk)]

(4.5)

Now the goal is to assign w to the sense s′ where Equation 4.5 applies. The
classifier described here based on Gale et al. is an instance of the Naive Bayes
classifier. Naive Bayes is broadly used in ML because of its efficiency and its
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ability to combine evidence from a large number of features[94]. The bag-of-
words model is pretty important right here. Naive Bayes is only applicable
if the state of the world that we base our classification on is described as a
series of attributes[84]. Since the context of a word w is represented as a bag
of words, where each word vj that occurs in the context is in this bag, the
classifier is applicable.

P (c|sk) = P (vj|vjinc|sk) =
∏
vjinc

P (vj|sk) (4.6)

The Naive Bayes assumption (Equation 4.6) that attributes used for descrip-
tion are all conditionally independent has two consequences. First, all the
structure and linear ordering of words within the context is ignored. Second,
the presence of one word in the bag is independent of another[84]. How-
ever, this is clearly not the case. Obviously, the Naive Bayes assumption is
not suitable if there are strong conditional dependencies between attributes.
Nonetheless, there is a large number of cases in which it performs well, because
the dependencies between attributes is not large enough[45].

s′ = argmax
sk

[logP (sk) +
∑
vjinc

logP (vj|sk)] (4.7)

This leads to the modified decision rule in Equation 4.7. Hereby P (vj|sk)
and P (sk) are computed via Maximum-Likelihood estimation from the labeled
training corpus.

P (vj|sk) =
C(vj, sk)

C(sk)

P (sk) =
C(sk)

C(w)

(4.8)

Equation 4.8 reveals this estimation. Hereby C(vj, sk) is the number of occur-
rences of vj in a context of sense sk in the training corpus. C(sk) is the number
of occurrences of sk in the training corpus and C(w) is the total number of
occurrences of the ambiguous word w. Having this mathematical model in
mind, an algorithm for a Naive Bayes classifier can be created[84].

47



4 Concepts & Design

Listing 4.4: Algorithm for disambiguation according to Naive Bayes
1 // Training
2 for all senses sk of w do
3 for all words vj in the vocabulary do
4 P (vj |sk) = C(vj ,sk)

C(vi

5 end
6 end
7 for all senses sk of w do
8 P (sk) =

C(sk)
C(w)

9 end
10

11 // Disambiguation
12 for all senses sk of w do
13 score(sk) = logP (sk)

14 for all words vj in the context window c do
15 score(sk) = score(sk) + logP (vj |sk)
16 end
17 end
18 choose s′ = argmax score(sk)

Such an algorithm is revealed in Listing 4.4[84]. According to Gale and
Church[58] as well as to Yarowsky[141], this algorithm reaches a precision
of 90% for six ambiguous nouns.

4.2.1.2 Information-theoretic Approach

Compared to the Bayesian classification, an information-theoretic approach
looks only at one informative feature in the context. However this feature is
carefully selected from a large number of potential informants [84]. Obviously
that is a huge advantage in comparison to Bayes classifier, which assumes the
independence of all words in the context of word w. Brown et al.[28] reported
indicators for French ambiguous words.

Table 4.4 shows three examples of their findings. Its object is a good indicator
for the verb prendre. Prendre une mesure translates as to take a measure,
while Prendre une décision means to make a decision. Likewise the word
immediately left to cent, as well as the tense of the verb vouloir are proper
indicators for these two words. In order to make a proper use of an informant,
a categorization of the sense it indicates needs to be performed. Going back
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Table 4.4: Highly informative indicators for three ambiguous French words
Ambiguous word Indicator Examples: value → sense
prendre object mesure → to take

décision → to make
vouloir tense present → to want

conditional → to like
cent word to the left per → %

number → money value

to the previous example, such a categorization would be that mesure indicates
to take and décision refers to to make. Figure 4.5 illustrates the Flip-Flop
algorithm used by Brown et al. for that purpose[84].

Listing 4.5: Flip-Flop algorithm to find indicators for disambiguation
1 find random partition P = {P1, P2}of{t1, . . . , tm}
2 while(improving) do
3 find partition Q = {Q1, Q2}of{x1, . . . , xn}
4 that maximizes I(P ;Q)

5 find partition P = {P1, P2}of{t1, . . . , tm}
6 that maximizes I(P ;Q)

7 end

Let t1, ..., tm be the translations of the ambiguous word, and xi, ..., xn the
possible values of the indicator. I(P ;Q) is the mutual information.

I(P ;Q) =
∑
p∈P

∑
q∈Q

p(p, q)log
p(p, q)

p(p)p(q)
(4.9)

The definition of the mutual information is shown in Equation 4.9(for a detailed
explanation please refer to Cover and Thomas[37, p. 20]). Manning[84] reports
that "it can be shown that each iteration of the Flip-Flop algorithm increases
the mutual information I(P ;Q) monotonically. Hence a natural stopping cri-
terion for that algorithm is that the mutual information does not increase
anymore.

Going back to the example already discussed in this section, prendre shall be
translated based on its object. Assuming {t1, ..., tm} = {take,make, rise, speak}
and {x1, ..., xn} = {mesure, note, exemple, dcision, parole}, the initial parti-
tion P of the senses might be P1 = {take, rise} and P2 = {make, speak}[28,
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p. 267]. Even though it depends on the the particular data used, which parti-
tion Q of the indicator values gives maximum mutual information (I(P ;Q)),
it is assumed that prendre translates by take when occurring with the objects
mesure, note, and exemple, and translates by make, speak, and rise when oc-
curring with décision, and parole. With that assumption, Q1 will maximize
the mutual information. An incorrect decision is only made when prendre la
parole is translated as rise to speak, however this cannot be avoided since rise
and speak are in two different partition groups. In the next two steps of the
algorithm, P is as P1 = {take} repartitioned and P2 as well as Q remain the
same. The partition for take thus is always true. When a distinction between
the other translations make, rise, and speak is wanted, more than two senses
would have to be considered. This is not possible with the Flip-Flop algo-
rithm presented in Listing 4.5[84]. The algorithm desinged by Brown et al.[27]
is required for that purpose.

As soon as an indicator and a particular partition of its values has been deter-
mined by the Flip-Flop algorithm, disambiguation is straight forward. First,
the value of xi needs to be determined for the occurrence of the ambiguous
word. Second, if xi is in Q1, the occurrence is assigned to sense 1, otherwise to
sense 2[84]. Even though in this example, the information-theoretic approach
is used for a translation problem, this can be adapted to typical NED problems
as well.

4.2.1.3 Approach to NED of Cardellino et al.

Section 4.1.3.1.1 already introduced the NER classifier by Cardellino et al[31].
This section briefly describes their implementation of a NED system, which
links NEs to YAGO URIs. The training corpus constituted 174.913 entities,
which was too big to train a classifier directly[31]. Hence, they use a two-step
classification pipeline. Using the NER classifier, they classify each mention as
its most specific class in their own ontology. For each of these classes, they train
a classifier to identify the correct YAGO URI, using only the URIs belonging
to that specific class, detected in step one. For that reason, they build several
classifiers, each of them trained with a reduced number of labels. The training
of the two-step pipeline is defined as follows: (1) assign to each mention its
ground truth ontology label, (2) split the dataset into train/test/validation, (3)
for each assigned ontology class (3.1) build new train/test/validation datasets
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by filtering out mentions not tagged with this class, and (3.2) train and evaluate
a classifier with the new train/test/validation data sets. Afterwards, the actual
linking is done by following these steps: (1) for each instance, assign a NE
class to it using a previously trained NER classifier, and (2) select the classifier
assigned to the class, and use it to obtain YAGOURI prediction of the instance.
In terms of NED, Cardellino et al. only implemented the described algorithms
as a neural network[31].

The NER of Cardellino et al. was evaluated by the test portion of their
Wikipedia corpus as well as on a corpus of judgments of the ECHR. However,
annotations on the level of entities has not been consolidated in the corpus of
judgemtns and hence, NED was only evaluated on the Wikipedia corpus[31].
When measuring the performance of the whole pipeline, from NER via NED
to the YAGO URIs, a F1 of 0.16 is reached, while using ground truth for NER,
a performance of F1 0.45 is achieved. This supports the assumption, that NED
for the legal domain still needs further research.

4.2.2 USML

The approaches introduced during the last section require for disambiguation
basic lexical resources, a small training set or a few collocation seeds. It may
seem little to ask for, but there are situations in which even such a small
amount of data is not available. In particular when dealing with special-
ized domains, such as the legal domain, there may be no sufficient resources
available[84]. This is because general dictionaries or knowledge bases are less
useful for domain-specific tasks. Not just the domain knowledge needs to be
specific for that domain, but also the algorithm may be adapted[84]. Hav-
ing a legal ontology containing mostly legal terms, a generic ontology-based
disambiguation algorithm would therefore be of little use. Such a knowledge
base or training data can’t be produced quickly on demand. Hence there is
an increasing number of scenarios where outside sources of information are
not available for disambiguation[84], this is the case in particular for the legal
domain[12, 117]. That is the reason for USML-based NED approaches.

However, completely unsupervised disambiguation is not possible in terms of
sense tagging. An algorithm labeling occurrences of a word to one sense or
another, can’t work without supervision or an external information source.
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Differentiation of senses is possible though in a complete unsupervised fashion.
Given a ambiguous word, an algorithm can collect all existing contexts, before
it clusters them into different groups. As a result, it can be told whether two
occurrences of a word mean the same or not, but it can’t be told what the
actual meaning is[84]. Several so called discrimination algorithms has been
developed, like the one by Schütze[119]. For the goal of this work though,
USML approaches in terms of NED are rather non beneficial.

4.2.3 Templated

Section 4.1.4 already briefly introduced the templated NER approach, which
is developed within the scope of this study. Having a template of a contract,
one could create a semantic model with regard to the template. To be more
precise, a template consists of various placeholders, where the actual content
is inserted during the contract creation process. A semantic model of such a
contract, can be created while adding each placeholder to the model (as a type
or an attribute). Going even further and regarding the placeholder names in
the model, a linking is already created. Of course, the linking is established
manually and this is basically just picking up the low hanging fruits, but this
enables the straight process from NER, via NED towards a populated semantic
model of a contract. This idea is implemented and also technically back-lit in
Chapter 5.1.4.

4.2.4 Comparison

Various approaches to NED were discussed in the previous sections. Now, the
different methodologies are compared, by using different criteria. Each criteria
is assessed with either low, medium, or high, whereby the assertion depends
on the actual criteria. Furthermore, none can be used if the criteria is not
applicable. Table 4.5 summarizes this comparison.

USML-based NED suffers portability issues on both, language level and domain
level, as well as SML approaches. Due to the language portability, which is
achieved by translating the templates, the templated approach already seems
to be a better fit. The latter method obviously does not need any training data
in comparison to SML. USML does not need training data either, however it
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Table 4.5: Comparison of NED approaches
Criteria SML USML Templated
Language Portability Low Low High
Domain Portability Low Low Low
Required Training Data High None None
Expert Knowledge Medium High Low
Manual Work Medium Medium Low
System Complexity High High Low

is not possible yet, to utilize USML for NED purposes. Hence, USML is not
interesting for an implementation in this work as of now. Of course, SML
needs training data, which is one of the major problems with German legal
data [31]. Hence, in the course of this work, only an approach to templated
NED shall be implemented.

4.3 Involved Systems

The prototypical implementation to semantically analyze and structure legal
contracts, which is implemented in the course of this thesis, is not a standalone
application. Reusability is quite important in software engineering and even
more important in research. Research is an ongoing process, involving various
different researchers. Exchange of information but also of recent work thus is
crucial [138]. Due to this, the prototypical implementation is designed as a
software component. The chair of "Software Engineering for Business Informa-
tion Systems" already has developed tools and software for legal informatics as
well as for social software engineering. Two systems or frameworks developed
by the chair, serve as a foundation for this work. The following two sections
describe the two involved systems in closer detail.

4.3.1 Lexia Framework

Lexia25 is a collaborative web based "data science environment for semantic
analysis of German legal texts"[137] with the goal to analyze legal texts from

25Further information about Lexia as well as about the respective research project
Lexalyze can be found at htts://wwwmatthes.in.tum.de/pages/1rvivk51a20k4/
Lexalyze-Interdisciplinary-Research-Program
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different sources regarding their linguistic structure. The chair of "Software
Engineering for Business Information Systems" at the TU München is devel-
oping Lexia as a research approach of tailoring generic NLP components to
the domain of legal data science. "To achieve highest accuracy in terms of
prediction and recall"[137], this tailoring process is necessary.

Inspired by the latest development in computer science and in particular
in the field of Artificial Intelligence (AI), Lexia has been developed to sup-
port legal tasks. Those tasks are very knowledge-, data- and thus also time
intensive[137].

Apache UIMA, developed by IBM and also used in IBM Watson, conduces as
a reference architecture.

Figure 4.4: Architecture of Lexia

Source: own illustration based on [137]

Figure 4.4 shows the main components: an exporter, an importer, a data stor-
age along with an access layer, a text-mining engine, and an user interface.
The application is based on a Java back-end by utilizing the web application
framework Play26. The data storage is handled by two parallel and indepen-
dent platforms. Firstly an Elasticsearch27 server is used to guarantee efficient

26http://www.playframework.com
27http://www.elastic.co/de

54

http://www.playframework.com
http://www.elastic.co/de


4 Concepts & Design

access to text data. Secondly, a SocioCortex28 instance may be used for storage
capabilities as well.

Legal texts in several formats such as PDF, HTML or XML can be imported
into the Elasticsearch database of Lexia, using the Importer. The Importer
supports a huge range of different sources for the import. The files can be
stored locally, but also distributed in the internet on publishers such as Beck-
Online29 or Rechtsprechung im Internet30. During the import, the system
detects the type of the legal document. Yet laws, judgments, patents, contracts
and miscellaneous are supported, whereas the latter one acts as a backup
document type.

Contract

Annotation

«interface»
IReferenceable

Metadata

SectionContainer

«abstract»
LegalDocumentContent

Section

Judgment

Law

«abstract»
LegalDocument

1 *

 refers to

*

*

1
1

contains 
*

1

1

*

Figure 4.5: Data model of Lexia

Source: [137]

LegalDocument is the abstract base class of all document types, from which
all specializations inherit. Figure 4.5 shows the data model of Lexia, which is
tailored to the structure of legal documents. Each object contains Metadata
with additional information about the object. The LegalDocumentContent is
implementing a composite pattern[129]. In order to map the complex and
nested structure of legal documents such as laws or contracts, the content is
stored in Sections. For some document types, this structure may be already
suitable. However, for arbitrary nested documents, SectionContainers exist.
Such a container can hold one to many Sections. Furthermore a SectionCon-
tainer is able to contain zero to many SectionContainers. This perfectly suits
the structure of most legal documents. The last object in the data model are
Annotations. They can enrich Sections with further information. Annotations

28http://www.sociocortex.com
29http://beck-online.beck.de/Home
30http://www.rechtsprechung-im-internet.de
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have a certain type and reflect the outcome of the Data- and Text-Mining
Engine.

The heart of Lexia is the Data- and Text-Mining Engine. As previously men-
tioned, it is built on the Apache UIMA. The major component within that
Engine is the Information Extraction Component. It has the ability to extract
and annotate semantic information in legal texts. This is achieved by the sup-
port of dictionaries and pattern definitions such as regex and Apache UIMA
Ruta scripts. By use of the rule language Ruta, patterns can be described in
an easily maintainable and reusable way.

The aforementioned Information Extraction Component can be instanced sev-
eral times during runtime. Hence the component can represent various tasks
such as, sentence splitter, tokenizer, POS tagger or NE recognizer. The Apache
UIMA utilizes the use of pipelines to process legal texts. The different instances
of the Information Extraction Component can be concatenated and executed
in one flow.

Figure 4.6: Processing pipeline for determining linguistic patterns with Apache
UIMA and Ruta

Source: [136]

The concept behind these pipelines is shown in Figure 4.6. Due to that efficient
processing of legal documents into linguistic Annotations as well as semantic
annotations is enabled. Linguistic annotations are for instance the tagging of
a sentence as a sentence or typical POS tagging. On the other side semantic
annotations can be the recognition of a text passage as a legal definition.
Figure 4.7 illustrates these different types of annotations.

The User interface (UI) of Lexia enables simple access to the documents for
the end user. Tasks such as importing legal texts or examining the results of
a processed pipeline is easy to accomplish as well. As long as the user has
some legal background, a user can easily select a specific pipeline, set it up
by means of different parameters, and eventually run it. Moreover the UI of
Lexia offers various other functionalities that are not relevant for this thesis
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Figure 4.7: Different annotation types shown in the Lexia user interface

Source: Own screenshot

and thus not described here. However, some important UI elements are shown
and explained in Chapter 5.2.

In summary, Lexia is a powerful collaborative environment for analyzing legal,
textual data linguistically and semantically. Nevertheless, in its current state,
this knowledge is mostly applied on laws and judgments. The different analysis
options describe here, can be applied on legal contracts as well. However, this
is not that helpful in order to reveal the tailored and relevant information of
a legal contract in a structured way.

To create this structured summary of a legal contract and to retrieve the rele-
vant semantic information, a prototypical implementation in the form of a soft-
ware component integrated into Lexia is implemented during that work. After
the next section, Section 4.4 collects functional and non-functional require-
ments in order to develop such a component. Based on those requirements,
Section 4.5 comes up with a suitable software architecture.

4.3.2 SocioCortex

SocioCortex is the second platform used as a data storage of Lexia. It is
described in this section, due to the fact that it has been developed by the
chair of "Software Engineering for Business Information Systems" of the TU
München as well. SocioCortex is a hybrid wiki system. This kind of hybrid
wiki system was first introduced my Matthes et al. [86] with the goal to create
a lightweight and structured data management system on top of a unstructured
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wiki system. When structuring wiki pages, usually users have to learn a new
and complex semantic language. By its tailored design, this new approach has
the goal to avoid such an issue. Hereby either the data import comes first
(bottom up), or the creation of a data model (top down). Afterwards the
user can be guided into a consistent and well defined data model through the
addition of constraints[86].

Reschenhofer et al. [113] evaluated this new approach in different projects.
During their evaluation, they adapted the approach which led to the meta
model shown in Figure 4.8.

Figure 4.8: Meta model of the SocioCortex

Source: [106] based on [113]

Workspace is the root node and can contain several Entities. Entities are
loosely coupled with an appropriate Entity Type by its type name. An Entity
is used to represent an instance of a given EntityType. It can have many At-
tributes of a given AttributeDefinition. They are also loosely coupled by the
AttributeDefinition name, such as Entity and EntityType. Each Attribute can
have different AttributeValues that are of a specific value type (e.g. Number-
Value, TextValue). AttributeDefinitions have a multiplicity which can either
be any number, at least one, exactly one or maximal one.
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In order to simplify the access of other software engineers, a comprehensive
REST Application Programming Interface (API)31 was added. By utilizing
the REST API, all elements of the here described meta model can be created,
modified, queried and deleted. For the data exchange, JSON is used.

Lexia initially used SocioCortex as a data storage, before Elasticsearch was
introduced. Due to the smart indexing of Elasticsearch and thus performance
improvements, Lexia uses Elasticsearch for the most part in terms of data
storage. However, some parts of Lexia, such as the modeling environment,
still use SocioCortex. Furthermore, the platform is able to switch seamless
between Elasticsearch and SocioCortex.

When structuring legal contracts, a model of a specific type of contract must be
defined. In the course of this thesis, the models are created in the SocioCortex.
Furthermore, the instances of a certain model are handled by the SocioCortex
as well. Chapter 5 deals with the details about that.

4.4 Requirements Analysis

After familiarizing with state of the art technologies, the first step of developing
a software component to semantically analyze and structure legal contracts is
to conduct a requirements analysis. As described in the previous chapter, the
requirements have been elicited by a literature review. Moreover, the current
state of Lexia was minded as well for the elicitation of the requirements.

This section presents the essential requirements of the prototypical implemen-
tation and it is explained why the software component should fulfill these
requirements and what consequences they implicate.

In order to illustrate the relevance, the keywords shall, should, and may speci-
fied by the ISO32 are used: shall indicates a requirement, should a recommen-
dation, and may is not mandatory, but useful to have.

31The documentation is available at http://www.sociocortex.com/documentation/
32https://www.iso.org/foreword-supplementary-information.html (last accessed: August,

31th 2017)
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The following requirements are divided into Functional Requirements (FR) and
Non-functional Requirements (NFR). Section 4.4.1 discusses the FRs and Sec-
tion 4.4.2 deals with the NFRs. At the end, Section 4.4.3 provides an overview
of the requirements in a tabular form. In this section, the prioritization takes
places as well, even though the compliance to the ISO standard already gives
a good indicator about the relevance of each requirement.

4.4.1 Functional Requirements

The FRs affecting the behavior of the prototypical implementation, and hence
the design, are described in the following.

FR01: Statistical ML based NER

As seen in Section 4.1, there are two types of NER approaches (Knowledge-
based and Statistical ML), enhanced by an approach, which is developed in
the course of this work (Templated NER). The software component shall be
designed to perform and evaluate statistical ML based NER.

FR02: Knowledge-based NER

The prototypical implementation shall be designed to perform and evaluate
knowledge-based NER.

FR03: Templated NER

An approach to NER based on templates is implemented during the course of
this work. The software component shall be designed to perform and evaluate
templated NER.

FR04: Supervised NED

In order to link NEs to types of the semantic model, defined by the user, a
supervised approach may be implemented.
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FR05: Unsupervised NED

The prototypical implementation may include an unsupervised technique to
link NEs to semantic roles within a model.

FR06: Dictionary-based NED

An approach based on a dictionary-base may be implemented within the soft-
ware component.

FR07: Templated NED

FR03 describes a requirement to include the templated NER approach, devel-
oped during this work. The prototypical implementation should implement a
functionality to link NEs, identified by the templated NER methodology, to
semantic functions.

FR08: Use of Apache UIMA Pipelines for NER

It shall be possible to execute the different approaches to NER (see FR01,
FR02 and FR03) isolated from each other. For that reason, each NER approach
shall be integrated into an Apache UIMA pipeline. It also shall be possible
to execute the NED approaches seamlessly after a certain NER approach.
Hence the approaches to NED (see FR04, FR05, FR06 and FR07) shall be
implemented as Apache UIMA pipelines as well.

FR09: Combine NER and NED Pipelines

FR08 already requires the use of Apache UIMA pipelines. The software archi-
tecture should allow the combination of different NER and NED pipelines, to
create NERD pipelines.
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FR10: Create Contract Models

The results of a NED pipeline must be stored in the back-end. For that reason,
contract models are used (see NFR07). The user shall be able to create such
a contract model in the UI.

FR11: Update and Change Contract Models

In the lifecycle of a legal contract, it may be changed from time to time. Hence,
it should be possible to update an existing contract model.

FR12: Delete Contract Models

Once a contract model is not needed anymore, the protoypical implementation
may support the deletion of such a contract model.

FR13: Use of Lexia’s Drafted Legal Documents

As describe in Section 4.3.1, Lexia comes with different document types. One
of the types is a DraftedDocument. The software component shall use this
type for the semantic analysis and restructuring.

4.4.2 Non-functional Requirements

After defining the FRs, NFRs must be elicited as well. The NFRs are de-
fined and discussed in this section. NFRs influence the system’s architecture
heavily.

NFR01: Simple UI

It shall be easy for the user to choose and run a NER or NERD pipeline. The
user shall easily see the results of a pipeline and thus face the structured con-
tract information. There should be a clear differentiation between the different
steps in the process of structuring an unstructured legal contract.

62



4 Concepts & Design

NFR02: Maintainability of Software Architecture

It should be easy for other developers to familiarize with the code in order to
maintain the software component. Hence, the software architecture should be
well defined and structured in a way supporting maintainability.

NFR03: Extensibility of Software Architecture

The adding of new functionality like additional or different NER approaches,
as well as NED approaches shall be possible without considerable refactoring.
In particular creating new pipelines shall be easy for other developers.

NFR04: Reusability of Software Architecture

The software architecture should support the reuse of the components.

NFR05: Use GermaNER for Statistical ML NER

As described in Section 4.1.3.1.2, GermaNER is an open source and thus freely
available statistical ML-based NER implementation. GermaNER shall be used
as one NER approach.

NFR06: Use DBPedia for Knowledge-based NER

Section 4.1.2 discussed DB[]edia as a proper source for knowledge-based NER.
DBPedia is freely available and hence shall be used as one NER approach.

NFR07: Reuse the Models and Structure from the Semantic Model
Component

Oppmann[106] created a semantic model component for Lexia during his mas-
ter’s thesis. The model class and as much as possible other parts and pieces
may be reused.
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NFR08: Incorporate Elasticsearch for the Storage

Lexia is using an Elasticsearch server to index the documents and annotations,
as described in 4.3.1. The prototypical implementation shall use Elasticsearch
for storing the contract models. This is also important to keep the data han-
dling within Lexia consistent.

NFR09: Incorporate SocioCortex for the Storage

Section 4.3.2 described the SocioCortex platform in detail. The actual in-
stances of the contract models should be handled by the SocioCortex. Due to
this, NFR07 is supported as well.

NFR10: Utilize Lexia’s existing Pipeline Architecture

The data- and text-mining engine of Lexia already implements various Apache
UIMA pipelines for text processing and semantic analysis. The software ar-
chitecture shall reuse this architecture.

4.4.3 Summary and Prioritization

A student’s work like this one is limited in time and resources. Thus, after
all FR and NFR are elicited, they must be prioritized. When designing the
software architecture, as many as possible requirements are regarded. How-
ever, there may be some requirements with a lower priority, being disregarded
partially.

Table 4.6 provides an overview of all FRs and NFRs, elicited during the pre-
vious two sections. The requirements are already prioritized in Table 4.6.

The priority column reflects the ISO-keywords as a number, scaled from 1 to
5, where 5 indicates highest priority and 1 lowest priority:

• may
∧
≈ priority 1 - 2

• should
∧
≈ priority 3

• shall
∧
≈ priority 4 - 5
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Table 4.6: Summary of all requirements
ID Requirement Priority
FR01 Statistical ML based NER 4
FR02 Knowledge-based NER 4
FR03 Templated NER 5
FR04 Supervised NED 2
FR05 Unsupervised NED 1
FR06 Dictionary-based NED 2
FR07 Templated NED 3
FR08 Use of Apache UIMA Pipelines for NER 5
FR09 Combine NER and NED Pipelines 3
FR10 Create Contract Models 5
FR11 Update and Change Contract Models 3
FR12 Delete Contract Models 2
FR13 Use of Lexia’s Drafted Legal Documents 5
NFR01 Simple UI 5
NFR02 Maintainability of Software Architecture 5
NFR03 Extensibility of Software Architecture 5
NFR04 Reusability of Software Architecture 3
NFR05 Use GermaNER for Statistical ML NER 4
NFR06 Use DBPedia for Knowledge-based NER 4
NFR07 Reuse the Models and Structure from the Semantic

Model Compoenent
2

NFR08 Incorporate Elasticsearch for the Storage 5
NFR09 Incorporate SocioCortex for the Storage 3
NFR10 Utilize Lexia’s existing Pipeline Architecture 5
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4.5 Architecture

After introducing related concepts and eliciting requirements, in this section
the architecture of the prototypical implementation is designed. First of all, a
conceptual overview revealing the process of semantically analyzing and struc-
turing legal documents is presented. Afterwards the software components and
data model of the implementation are described in greater detail. Eventually,
the workflow of such a process is revealed, followed by an overview of the REST
API.

4.5.1 Conceptual Overview

In order to achieve the goal of semantically analyzing and structuring legal
contracts, a process consisting of NER and NED is defined. This concept
serves as a reference for the actual implementation. For the explanation of
this concept, the example of an employment agreement is taken.

Figure 4.9: Example of an employment agreement

Source: Own illustration
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The first step towards the extraction of semantic knowledge is the application
of NER. The goal of this step is to extract all NEs in the agreement. The
result of this task is illustrated in Figure 4.9. Blue highlighted phrases reflect
organisations, green phrases locations, and yellow phrases persons.

Figure 4.10: Conceptual overview of the recognition and disambiguation pro-
cess

Source: Own illustration

Once the NEs are recognized, the actual disambiguation can take place. Each
contract needs to be modeled. For that reason, the prototypical implemen-
tation allows the definition of such a semantic model. For the sake of this
example, assuming a model with roles like employer, employee, cancellation
period and end of contract, Figure 4.10 includes both steps of the NER and
NED process. The phrase "Technische Universität München" is recognized
and classified as a organization in the first step. During the second step, the
NE is linked to the respective role Employer.

This is the basic concept behind the software component, being implemented
in the course of this thesis. Figure 4.11 depicts the described concept within
a conceptual software architecture. It reflects the basic architecture of the
semantic analysis component. The Semantic Analysis Component consists of
two sub components, that is: (1) the Named Entity Recognition component,
and (2) the Named Entity Disambiguation component. The former gets a Con-
tract as input and performs NER on it. Optionally for the templated NER, it
consumes a Template, too. This results in an Annotated Contract. This Anno-
tated Contract is forwarded to the disambiguation component. Depending on
the approach, a Template, external resources such as knowledge bases as well
as AI is used to create the Structured Contract. The integration of this Seman-
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tic Analysis Component into Lexia’s architecture is described in the following
section (4.5.2).

Figure 4.11: Conceptual architecture of the semantic analysis component

Source: Own illustration

4.5.2 Software Architecture

Figure 4.12 depicts the target architecture of the system. The new components
which were implemented are highlighted in blue (cf. with Figure 4.4 in Section
4.3). Components by Oppmann[106] being reused and or adapted are shown
in grey.

The main contribution of this work to Lexia is the Semantic Analysis Compo-
nent, which consists of two sub components, namely the component for NER
and for NED. Furthermore the UI was adjusted accordingly. The NER Com-
ponent is responsible for performing the NER task, while the NED Component
does so for NED.

The Semantic Analysis Component can connect to external resources such
as DBpedia in order to perform its tasks. As already described in Section
4.3, Lexia’s Data and Text Mining Engine is based on Apache UIMA. The
components of this work shall be executed within an Apache UIMA pipeline
as well. For that reason, the Semantic Analysis Component is intertwined
with the Data and Text Mining Engine. Due to this, it can obtain knowledge
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Figure 4.12: Target architecture of Lexia

Source: Own illustration

from the resources within the Data and Text Mining Engine, such as thesauri,
dictionaries or pattern definitions.

NFR07 already demands the reuse of parts of the modeling components devel-
oped by Oppmann. In fact, this prototypical implementation uses the same
concept for the storage of semantic models. First, models are stored in the
Elasticsearch server, to be able to link them to the other domains such as
DraftedDocuments. Second, the semantic information of a model is stored in
the SocioCortex. In order to access SocioCortex for persisting the gained se-
mantic information, the SocioCortex REST client is used. In terms of UI,
parts from the Modeling Component are adapted. The UI components of this
system are describe in Chapter 5.2.

Speaking about UI, the Semantic Analysis UI is purely implemented in HTML5,
CSS3, and JavaScript, utilizing the AngularJS33 framework. The parts being
adapted from Oppmann, use JointJS34, a diagramming library, to draw visual
representations of the semantic models. Moreover, vis.js35 is used to render
the object diagrams.

33http://angularjs.org
34http://www.jointjs.com
35http://visjs.org
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4.5.3 Mapping between Semantic Model Elements and

SocioCortex Entities

The semantic model, which is created in order to structure a legal contract
based on the extracted semantic information, shall be stored in the SocioCor-
tex. For that reason, a mapping must be created which maps the components of
the graphical model representation to entities of SocioCortex. Table 4.7 shows
the approach of how this mapping was implemented already by Oppmann[106]
and hence borrowed for this work. Nonetheless some mappings are superfluous
for this work and thus are not discussed here.

Table 4.7: Mapping between semantic model elements and SocioCortex entities
Semantic model element SocioCortex entity
Model Workspace
Type EntityType
Attribute AttributeDefinition

This mapping naturally mirrors the structure of the semantic model onto the
tree structure of SocioCortex entities. Figure 4.13 opposes the hierarchy of the
semantic model elements in Lexia with their mapped entities from SocioCor-
tex. Attributes are mapped to AttributeDefinitions, Types are interpreted as
EntityTypes and the Model itself is mapped to the Workspace.

Figure 4.13: Tree hierarchy of semantic model elements and SocioCortex enti-
ties

Source: Own illustration based on[106]
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4.5.4 Workflow Overview

The previous section gave an overview of the architecture of Lexia along with
the component for the semantic analysis. This section provides a more pro-
found insight into the interaction between the user and the system in order to
perform a task for semantically analyzing and structuring legal contracts. The
results of such a workflow are additional valuable information for the design
of the required methods of the REST API presented in Section 4.5.5.

To conduct semantic analysis and structuring of legal contracts, two actors are
required: (1) the user utilizing the UI and creating legal contracts for the (2)
legal data science environment Lexia. In Figure 4.14 the interaction between
the user and the system is illustrated. The arrows indicate the message flow
along with their direction. The workflow consists of three main stages: (1) the
preparation of the (bordered with blue) (2) NER (framed with orange) and the
(3) NED (colored in yellow). Hereby the preparation stage is utilized twice,
once for NER and another time for NED.

Figure 4.14: Conceptual workflow model of the semantic analysis

Source: Own illustration

The following paragraphs describe the three workflow stages in detail, starting
from the top of Figure 4.14.
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Preparation (1)

The preparation consists of six steps, whereas four steps are used to setup
NER, and two steps are used to configure NED.

1. In order to perform NER as well as NED, a legal contract needs to
be available in the system. The user creates such a contract, which is
optionally based on a template. The system stores the contract in the
Elasticsearch data storage.

2. For the disambiguation process, a semantic model is required. The user
designs a model based on an existing contract by utilizing the UI. The
model is saved in the Elasticsearch server, while the types and attributes
are stored in the SocioCortex.

3. Before the NER task can be triggered, a contract needs to be selected.
The NER performs its task on the selected document.

4. Due to the fact different NER approaches are integrated into this proto-
typical implementation, the user selects the desired technique.

NER

1. After everything has been prepared, the user initiates the NER task in
the UI. On behalf of the user, the system executes the respective Apache
UIMA pipeline, according to the setup. After the execution, the resulting
annotated document is returned.

2. The user examines the annotated document and is able to see detailed
information about the annotations.

Preparation (2)

1. In this step, the user selects an appropriate approach for the linking
process, based on the selected NER pipeline. Hereby, the UI supports
the user by pre-filtering the options. For instance, if the user has run a
templated NER pipeline, only templated NED is available.
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2. The recognized NEs are subject to be linked to a model, representing
the processed contract. For that reason, the user selects an appropriate
model.

NED

1. Once again, after the configuration is done, the user triggers the NED
task. As a consequence, the system executes the related Apache UIMA
pipeline.

2. After successfully running the pipeline, the model is populated with the
semantic information gained during this step. The newly structured con-
tract is returned to the UI, which allows the user to review the structured
depiction of the contract.

4.5.5 REST API

For the communication between the frontend and backend of Lexia, a REST
API is already in use. The REST API is a software architectural style that
allows two systems or components to communicate with each other in a state-
less fashion. It is the state-of-the-art technology for web applications[85]. A
transferred message mainly consists of three components: a Hypertext Transfer
Protocol (HTTP) method such as GET or POST, an URI, and some content
type such as JSON or XML.

In what follows, the enhancement of Lexia’s REST API, necessary to build
the semantic analysis component developed in this work, is described in Table
4.8. This API enables the communication between the front-end and back-
end. The structure and purpose of each request are described as well as the
JSON nodes that must be part of the request body. The description of the
body does not reflect the actual correct JSON architecture of the request, but
provides a suitable indication what the actual request needs. This REST API
also reflects the requirements defined in Section 4.4, and the workflow defined
in Section 4.5.4.

In general, there are routes to trigger the execution of pipelines such as a
NER pipeline, a route to retrieve model instances corresponding to a specific
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contract, and a request in order to retrieve all models which are based on
contracts. Furthermore, other routes of the existing REST API has been used
in this work. Table 4.9 reveals these routes. These routes are mainly for the
creation, update, and deletion of models.
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In the previous chapter (4), the objectives and requirements as well as a suit-
able strategy in order to implement the prototypical implementation from this
work were discussed. The next step is to actually implement it. The realization
of this implementation is described in this chapter. The first section 5.1 deals
with the back-end implementation before Section 5.2 explains the development
of the UI.

5.1 Back-end

The enhancement of the Lexia back-end mainly accomplishes two tasks: (1) to
perform NER, and (2) to perform NED. As already described in Chapter 4.3.1,
Lexia is developed with the web application framework Play. Hence, a Java
back-end takes over the main text mining functionalities. Furthermore the
Text and Data Mining Engine of Lexia, utilizes the Apache UIMA reference
architecture. NFR10 asks for the incorporation of Lexia’s existing pipeline
architecture. Consequently the new implementations are integrated into that
existing architecture.

Section 5.1.3 deals with the implementation of the NER task, while Section
5.1.4 describes the NED development. Before that, Section 5.1.1 and Section
5.1.2 elaborate on the software pieces being necessary for this implementa-
tion.

5.1.1 Lexia’s existing Pipeline Architecture

First of all, Lexia composes a variety of different pipelines for specific goals.
For the purpose of managing all these pipelines, a PipelineRepository exists.
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Listing 5.1: Excerpt of PipelineRepository to manage pipelines
1 public class PipelineRepository {
2 private static PipelineRepository pipelineRepository = new PipelineRepository();
3

4 private List<PipelineDescription> pipelines = Arrays.asList(
5 pipe("Advanced Pipeline", AdvancedPipeline::new),
6 pipe("Subject Pipeline", SubjectPipeline ::new, false )
7 // More pipelines
8 ) ;
9

10 // Constructor
11

12 public static PipelineRepository getInstance() {
13 return pipelineRepository;
14 }
15

16 public Pipeline getPipeline( int id) {
17 return pipelines .get(id) . supplier .get() ;
18 }
19

20 // Getter and Setter
21 // Convenient methods for adding new pipelines
22 }

The PipelineRepository is shown in Listing 5.1. The class uses the singleton
pattern[132] and holds all pipelines in a list. It offers convenient methods for
adding new pipelines (not depicted in the listing above), various getter and set-
ter methods (also not shown in the listing above) as well as different functions
to retrieve a specific pipeline, such as the getPipeline method which return a
pipeline based on its id. For the full source code of the PipelineRepository,
please refer to Appendix A.1

All pipelines hold by that repository inherit from the abstract base class
Pipeline. The source code of this class is partially shown in Listing 5.2.
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Listing 5.2: Excerpt of the abstract base class for all pipelines
1 public abstract class Pipeline {
2 protected AnalysisEngine pipe;
3 protected JCas jCas;
4

5 public void setup(LegalDocument legalDocument, String[] rutaScripts) throws
ResourceInitializationException, IOException, InvalidXMLException,
CASException {

6 // Implementation
7 }
8

9 protected void initCas(LegalDocument legalDocument, String[] rutaScripts) throws
ResourceInitializationException, IOException, InvalidXMLException,
CASException {

10 // Implementation
11 }
12

13 // Convenient Methods
14

15 public PipelineResult process(Article article , String text) throws
AnalysisEngineProcessException {

16 // Implementation
17 }
18

19 public PipelineResult processStandalone(Article article , String text , String []
rutaScripts) throws AnalysisEngineProcessException, CASException,
ResourceInitializationException, InvalidXMLException, IOException {

20 // Implementation
21 }
22

23 public void preDocument(LegalDocument d) {
24 }
25

26 public void postDocument(LegalDocument d) {
27 // Implementation
28 }
29

30 public void preArticle(Article article , String text) {
31 // Implementation
32 }
33

34 public void postArticle(Article article ) {
35 // Implementation
36 }
37 }
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Again, for the full reference please refer to the Appendix A.2. The code shown
in Listing 5.2 is the crucial one in order to understand the sense behind this
class. After a pipeline has been retrieved from the PipelineRepository, its
setup function is invoked. First, setup assembles the pipeline and assigns it to
the pipe attribute. Second, the jCas object is initialized. After these steps a
pipeline is basically already prepared to be executed. Nonetheless, the Pipeline
class suggests different hooks to be completed on different stages within the
pipeline execution. Preparation steps can be undertaken in preDocument, and
preArticle, whereas the function is called before the processing of a document,
respectively an article, starts. The same intention is behind the methods post-
Document, and postArticle, but the action is performed after the correspond-
ing stage. The Pipeline class furthermore offers different convenient methods
(please also refer to the Appendix A.2). The pipelines developed in the course
of this thesis shall comply to this structure and thus also inherit Pipeline.

In order to execute pipelines, a designated class PipelineExecutor exists. A
nice feature of the class is its ability to handle various threads while being
thread-safe. When executing a Pipeline, PipelineExecutor invoked initially
the pipeline’s setup function. Next it calls preDocument before it actually
loops through all the articles. Hereby, before each article is processed, the
preArticle function is called, while postArticle is called after processing the
article. Once all articles are processed, eventually postDocument is called.
The actual mechanics as well as the implementation is not relevant for this
work. Due to this, the source code is just attached to the appendix of this
thesis (Appendix A.3)

5.1.2 Lexia’s Data Model for Legal Contracts

Figure 4.5 in Section 4.3.1 already introduced briefly Lexia’s data model. For
the purpose of this work, only the document type DraftedDocument is used.
As the other legal document classes it inherits from the abstract base class
LegalDocument which in turn inherits from the abstract superclass Entity.
This class defines the basic interface of every entity within Lexia, that is an id
and type attribute as well as methods for storage and deletion. Please refer to
Appendix A.4.
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Listing 5.3: Excerpt of abstract base class LegalDocument
1 public abstract class LegalDocument extends Entity {
2 public final TreeMap<String, Function<LegalDocument, Double>> metricList =

new TreeMap<>();
3 public String annotationDataForDownload;
4

5 private void initMetricList () {
6 metricList .put("Word Count", MetricCalculation::countWords);
7 metricList .put("Sentence Count", MetricCalculation::countSentences);
8 // Other metrics
9 }

10

11 public TreeMap<String, Integer> totalAmountOfAnnotations = new TreeMap<>();
12 public TreeMap<String, TreeMap<String, Integer>>

totalAmountOfDistinctAnnotations = new TreeMap<>();
13

14 protected String language = "de";
15 public String title ;
16 private String ID;
17 public String abbreviation;
18 public Date creationDate;
19 public Date promulgationDate;
20

21 private String explicitNetwork;
22 private int [][] implicitNetwork;
23

24 public String annotationStructures;
25

26 public List<ArticleContainer> articleContainers = new ArrayList<>();
27 private List<Article> articles ;
28

29 public TreeMap<String, Double> legalDocument_metrics;
30

31 public LegalDocument() {
32 articleContainers = new ArrayList<>();
33 legalDocument_metrics = new TreeMap<>();
34 articles = new ArrayList<>();
35 abbreviation = "";
36 this .creationDate = new Date();
37 this .promulgationDate = new Date();
38 initMetricList () ;
39 }
40 // Convenient Methods
41 }
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An excerpt of the abstract base class LegalDocument is depicted in Listing
5.3. The main purpose of this class is the definition of attributes required by
all legal documents as well as convenient methods (such as getter and setter,
determination of metrics, or to retrieve other meta information). Of course a
legal document has an ID, being represented by the unique identifier provided
from Elasticsearch. The attributes title, language and abbreviation are self-
explanatory. The date by which a document has been created (imported or
drafted) is stored in creationDate, while promulgationDate indicates the due
date. Legal documents, in particular laws, often reference each other. When
extracting these references, networks can be built. The attributes explicitNet-
work and implicitNetwork capture such networks. A main feature of Lexia is
the IE. Hereby the obtained information is depicted in form of annotations.
In fact, an annotation is not directly linked to a document, but to an article.
All articles of an document are stored in the list articles, while the article con-
tainers remain in the respective list articleContainers. Each annotation has a
distinct type. All annotation types of the annotations belonging to a document
(via the articles) are consolidated and kept in the annotationStructures. This
attribute is heavily utilized by the UI in order to allow the user to select the
annotations which should be displayed. For the analysis of legal documents
metrics are very useful. These metrics are stored in the metricList, after they
are determined.

Since this work semantically analysis and structures legal contracts, the re-
spective class is intensely used. The class DraftedDocument does not introduce
any new attributes, but includes plenty convenient methods. Furthermore, the
functionality for storing a DraftedDocument (Listing 5.4), as well as retrieving
it is implemented. Hereby various methods exist, supporting different retrieval
criteria. The Elasticsearch server always return a map of key-value pairs. The
function documentFromMap depicted in Listing 5.5 performs the mapping from
such a map to the actual Java class.
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Listing 5.4: Method to store contracts
1 public class DraftedDocument extends LegalDocument {
2 // . . .
3 @Override
4 protected boolean saveEntityElasticsearch() {
5 try {
6 Map<String, Object> attributes = new HashMap<>();
7 if ( this . title != null && !this. title .isEmpty()) {
8 attributes .put("Title", this . title ) ;
9 }

10 if ( this .creationDate != null) {
11 attributes .put("CreationDate", this.creationDate);
12 } else {
13 attributes .put("CreationDate", new Date());
14 }
15 // More Attributes being stored
16 if ( this .isNewEntity()) {
17 String uid = ElasticsearchServer. insert ( this .SC_TYPE(), attributes);
18 this .setID(uid);
19 } else {
20 ElasticsearchServer .update(this.SC_TYPE(), this.getID(), attributes);
21 }
22 } catch (Exception e) {
23 e.printStackTrace();
24 return false ;
25 }
26 return true;
27 }
28 // . . .
29 }

A map with strings as key and objects as value is created at the beginning
of saveEntityElasticsearch. Then it takes each attribute of a DraftedDocument
and inserts it into the map. This function is used for initially storing a contract
as well as for updating it. Hence before the actual request to the Elasticsearch
server can be sent, it is checked whether the entity is a new one or not. In either
case the attributes map is forwarded to the Elasticsearch server to perform the
storage function.
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Listing 5.5: Method to populate a DraftedDocument
1 public class DraftedDocument extends LegalDocument {
2 // . . .
3 public static DraftedDocument documentFromMap(Map<String, Object> esMap) {
4 DraftedDocument document = new DraftedDocument();
5 try {
6 SimpleDateFormat dateFormat = new

SimpleDateFormat("yyyy−MM−dd’T’HH:mm:ss.SSS’Z’");
7 document.setID((String) esMap.get("id"));
8 if (esMap.containsKey("Title")) {
9 document.title = (String) esMap.get("Title");

10 }
11 if (esMap.containsKey("CreationDate")) {
12 document.creationDate = dateFormat.parse((String)

esMap.get("CreationDate"));
13 }
14 // Other Attributes being populated
15 } catch (Exception e) {
16 e.printStackTrace();
17 }
18 return document;
19 }
20 // . . .
21 }

As already mentioned, DraftedDocument offers a few methods to retrieve a
contract from the database. Once the document is retrieved in form of a map
with strings as keys and objects as value, the function documentFromMap is
called within the respective retrieval method. First, an empty DraftedDocu-
ment is created, before it is populated with the corresponding attributes.

The information being provided in this section is sufficient in order to under-
stand the parts of Lexia’s data model, which are used in the course of this
thesis. The following subsections deal with the actual implementation.

5.1.3 NER

This section describes the implementation of the NER task of this prototyp-
ical implementation. The requirements FR01, FR02, and FR03 ask for three
different approaches to NER. During the conclusion of the different techniques
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to NER in Chapter 4.1.5, three specific technologies have been identified. Sec-
tion 5.1.3.1 deals with the implementation of a NER approach, incorporating
GermaNER. Afterwards in Section 5.1.3.2 the development of a NER task,
utilizing DBpedia Spotlight is described. Eventually templated NER is imple-
mented during Section 5.1.3.3.

5.1.3.1 GermaNER

In Chapter 4.4.2, the NFR05 demands the incorporation of GermaNER as a
statistical NER approach. After discussing GermaNER in Chapter 4.1.3.1.2,
this section describes the prototypical implementation of it.

Lifecycle of GermaNERPipeline

As in Section 5.1.1 already mentioned, each pipeline needs to implement the
abstract pipeline class. That section also described the typical processing life-
cycle of such a pipeline. This life-cycle is again depicted in Figure 5.1.

Figure 5.1: Intended life-cycle of the Pipeline

Source: Own illustration

GermaNER requires an input format, similar to the CoNNL format. The
problem with this format is, that it does not reflect the actual textual repre-
sentation of contracts within Lexia. Hence, after GermaNER has annotated
all the NEs in a given article, all the annotations manually need to be trans-
formed into the native text. Due to that, the pristine text of an article must
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be not just attached to the jCas object, but also to different AnalysisEngines.
According to the typical life-cycle of a pipeline, the setup function is called
once for a whole document, which implies that this approach is not suitable
for the textitGermaNERPipeline. Figure 5.2 reveals the life-cycle used for the
GermaNERPipeline.

Figure 5.2: Actual life-cycle of the GermaNERPipeline

Source: Own illustration

As one can see, the major difference is that the new life-cycle create a pipeline
per processed article instead of one pipeline for each document. This is accom-
plished by using the setup function only to store the processed legal document
within the pipeline in an attribute. The preArticle method performs the actual
setup before each article is processed.

Implementation of GermaNERPipeline

The previous paragraph introduced the differences between the intended life-
cycle by the base class Pipeline and the one represented by GermaNER-
Pipeline. Due to that reasoning, the implementation of theGermaNERPipeline
differs from the designated Pipeline.
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Listing 5.6: Excerpt of GermaNERPipeline
1 public class GermaNERPipeline extends Pipeline {
2 private LegalDocument document;
3 @Override
4 public void setup(LegalDocument legalDocument, String[] rutaScripts) throws

ResourceInitializationException, IOException, InvalidXMLException,
CASException {

5 // No setup of pipeline and cas object necessary here, because we need it for
each article

6 document = legalDocument;
7 }
8 @Override
9 public AnalysisEngine assemblePipeline(LegalDocument document, String[]

rutaScripts) throws ResourceInitializationException, IOException,
InvalidXMLException {

10 return null ;
11 }
12 // . . .
13 }

The setup function of GermaNERPipeline only assigns the current contract to
the new attribute document as shown in Listing 5.6. Furthermore the over-
riden assemblePipeline(LegalDocument document, String[] rutaScripts) is not
used and thus, returns null. The suggested initCas(LegalDocument document,
String[] rutaScripts) is not used either and consequently not overriden. As
already described, preArticle is responsible for the setup.

Listing 5.7: The method preArticle
1 @Override
2 public void preArticle(Article article , String text) {
3 try {
4 pipe = assemblePipeline(document, null, text);
5 initCas(document, null, text) ;
6 }
7 // Catch various exceptions
8 }

This setup is shown in Listing 5.7. The new implementation of assemblePipeline,
which is used by preArticle is revealed in the next listing (Listing 5.8).
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Listing 5.8: The new assemblePipeline method
1 public AnalysisEngine assemblePipeline(LegalDocument document, String[] rutaScripts,

String text) throws ResourceInitializationException, IOException,
InvalidXMLException {

2 // Create analysis engines for preparation of data
3 AnalysisEngineDescription conllSegmenterDesc =

createEngineDescription(CoNLLSegmenter.class);
4 AnalysisEngineDescription nerReaderDesc =

createEngineDescription(NERReader.class, NERReader.DATA_ZIP_FILE, null);
5 AnalysisEngineDescription germaNERPrep =

createEngineDescription(conllSegmenterDesc, nerReaderDesc);
6

7 // Create analysis engine for GermaNER
8 File modelDirectory = new File("semanticAnalysis/germaNER");
9 modelDirectory.mkdirs();

10 if (!new File(modelDirectory, "model.jar").exists ()) {
11 IOUtils.copyLarge(Play.application().resourceAsStream("model/model.jar"),
12 new FileOutputStream(new File(modelDirectory, "model.jar")));
13 }
14 if (!new File(modelDirectory, "MANIFEST.MF").exists()) {
15 IOUtils.copyLarge(Play.application().
16 resourceAsStream("model/MANIFEST.MF"),
17 new FileOutputStream(new File(modelDirectory, "MANIFEST.MF")));
18 }
19 if (!new File(modelDirectory, "feature.xml").exists ()) {
20 IOUtils.copyLarge(Play.application().resourceAsStream("feature/feature.xml"),
21 new FileOutputStream(new File(modelDirectory, "feature.xml")));
22 }
23

24 AnalysisEngineDescription germaNERDesc =
createEngineDescription(NERAnnotator.class,
GenericJarClassifierFactory.PARAM_CLASSIFIER_JAR_PATH,
modelDirectory.getAbsolutePath() + "/model.jar",
NERAnnotator.PARAM_FEATURE_EXTRACTION_FILE,
modelDirectory.getAbsolutePath() + "/feature.xml",
NERAnnotator.FEATURE_FILE, modelDirectory.getAbsolutePath());

25 // Create engines to transform to lexia typesystem
26 // . . .
27 }

AnalysisEngines for the data preparation are defined in the lines 7 to 9. The
CoNLLSegmenter is responsible for the transformation of the article’s content
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into CoNLL format. This is done by utilizing simple regex rules (please refer
to Appendix B.1 for the detailed rules). The next pipeline component has to
be the NERReader. This class is required by GermaNER and also used in its
example terminal application. It parses each token in the CoNNL format and
applies already different features to these, such as the freebase list. Nonethe-
less, due to the usage of the Java Play Framework, the instantiation of static
files of the NERReader had to be changed. Line 9 merges these two engines
(NERReader and CoNNLSegmenter) into one AnalysisEngineDescrption ger-
maNERPrep. The next step is the definition of the actual GermaNER analysis
engine. This is done in the lines 12 to 30. After defining the location of the
GermaNER components, the model is loaded as well as the feature description.
Having these resources loaded, the AnalysisEngineDescription germaNERDesc
can be instantiated. The next step of the pipeline is the transformation of the
found NEs into Lexia’s type system. Before the way this is done can be de-
scribed, it must be elaborated a bit on Lexia’s typesystem.

Lexia incorporates two type systems in terms of CAS. The first one is about
NLP types in general and based on DKPro Core36, while Lexia extends this
type system. For types specific for the legal domain an own type system, which
imports the one provided by DKPro Core, has been introduced as well. This
type system is extended during this work by the following types: Person, Or-
ganisation, Location, Other, Date, MoneyValue. Types for references already
existed. Dates, monetary values and references however are not detected by
means of GermaNER. Simple regex patterns are used to extract these types.
The remaining code of assemblePipeline defines the analysis engine to trans-
form the annotated article in CoNNL format into the lexia typesystem. This
is accomplished by utilizing regex patterns. For each of the types a pattern
class as well as an annotator exists. In place of all these pattern classes, the
PersonPatterns class is shown in Listing 5.9.

36https://dkpro.github.io/dkpro-core/
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Listing 5.9: The PersonPatterns class
1 public class PersonPatterns {
2 private static List<String> personPattern = new ArrayList<>();
3 private static List<NamedEntityDiff> personPatternWithContext = new

ArrayList<>();
4

5 public static String getPersonPattern() {
6 return "(" + String.join("|", personPattern) + ")";
7 }
8 public static List<NamedEntityDiff> getPersonPatternWithContext() {
9 return personPatternWithContext;

10 }
11 public static void addPersonPattern(String pattern) {
12 personPattern.add(pattern);
13 }
14 public static void addPersonPatternWithContext(NamedEntityDiff diff) {
15 if ( diff .getNamedEntity().trim().length() > 0) {
16 personPatternWithContext.add(diff);
17 }
18 }
19 public static void clearPattern() {
20 personPattern.clear() ;
21 personPatternWithContext.clear();
22 }
23 }

Such a pattern consists of two attributes. The first attribute personPattern
holds simply patterns in form of strings. The attribute personPatternWith-
Context bears a list of NamedEntityDiffs. For the implementation of the Ger-
maNER pipeline, only personPattern is of interest. The attribute personPat-
ternWithContext along with NamedEntityDiff is described in Section 5.1.4.
Representatively for all annotator classes, an excerpt of PersonAnnotator is
depicted in Listing 5.10.
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Listing 5.10: Excerpt of PersonAnnotator class
1 public class PersonAnnotator extends SegmenterBase {
2 public static final String VIEW = "lexiaTypeView";
3 @ConfigurationParameter(name = VIEW, mandatory = false)
4 private String view = null;
5

6 @Override
7 protected void process(JCas aJCas, String text, int zoneBegin) throws

AnalysisEngineProcessException {
8

9 if (view != null) {
10 try {
11 aJCas = aJCas.getView(view);
12 text = aJCas.getDocumentText();
13 }
14 catch(CASException e) {
15 e.printStackTrace();
16 }
17 }
18 List<Annotation> foundAnnotations = new ArrayList<>();
19

20 String personPatternString = PersonPatterns.getPersonPattern();
21 Pattern personPattern = Pattern.compile(personPatternString);
22 Matcher m = personPattern.matcher(text);
23 while (m.find()) {
24 if (m.start() == m.end() ||

checkAnnotationAlreadyFound(foundAnnotations, m.start()) == true)
continue;

25 Annotation personAnnotation = createPersonAnnotation(aJCas, m.start(),
m.end());

26 foundAnnotations.add(personAnnotation);
27 }
28 }
29 }

The configuration parameter of line 2 to 4 is necessary, to provide the Person-
Annotator with the proper CAS view, containing the native unannotated text
of the article being processed. However, for other purposes the class may be
used without that configuration parameter and thus, line 9 to 17 performs a
check whether this view is supposed to be used or not. The actual annotation
process is accomplished from line 20 to 27. The respective pattern is extracted
from the PersonPatterns and assigned to personPatternString. A personPat-
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tern is defined by means of the extracted personPatternString. Now a Matcher
can proceed through the text in order to find each occurrence of any pattern
within the personPattern. Each appearance is then turned into an annotation
of type Person in line 25, in case it was not already persisted. More precisely,
the found NEs of type Person by GermaNER shape the used Pattern and thus,
this class turns each recognized NE into an annotation of the respective lexia
type. As already mentioned above, three types are recognized by utilizing only
regex. The same classes exist for these types, the only difference is that the
pattern classes contain static pre-defined patterns.

Listing 5.11: Creation of analysis engines for the type system transformation
1 AnalysisEngineDescription neTransformerDesc =

createEngineDescription(NETransformer.class, NETransformer.FULL_TEXT, text);
2 AnalysisEngineDescription personDesc = createEngineDescription(PersonAnnotator.class,

PersonAnnotator.VIEW, NETransformer.LEXIA_TYPES_VIEW);

The transformation requires several analysis engines. Listing 5.11 depicts two
of these. The first line creates the NETransformer, which is necessary to pop-
ulated the pattern classes with the relevant regex patterns (Appendix B.2).
Line 2 creates already the PersonAnnotator, while all other annotators fol-
low the same principle. After all AnalysisEngines has been created, the final
pipeline can be constructed. Now the new initCas function can be called
within preArticle. The following listing (Listing 5.12) includes the source code
of that function.

Listing 5.12: The method initCas of GermaNERPipeline
1 protected void initCas(LegalDocument legalDocument, String[] rutaScripts, String text)

throws ResourceInitializationException, IOException, InvalidXMLException,
CASException {

2 jCas = UimaUtil.produceJCas();
3 jCas.createView(CoNLLSegmenter.FULL_VIEW);
4 jCas.getView(CoNLLSegmenter.FULL_VIEW).setDocumentText(text);
5 jCas.setDocumentLanguage(legalDocument.getLanguage());
6 }

After the jCas object is created by means of UimaUtil, a specific view is cre-
ated. The CoNNLSegmenter formats the article text into the CoNNL format.
This is done in the default view of the CAS object, because the NERReader
expects its input in that default view. Hence, the CoNLLSegmenter gets its
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own input, the native text, in an extra view. This is done in the lines 3 and 4.
The final line only sets the language of the document to German. With that
said, the setup is done and the actual pipeline of GermaNER can be invoked.
The process function is supposed to do so (Listing 5.13).

Listing 5.13: The method process of GermaNERPipeline
1 @Override
2 public PipelineResult process(Article article , String text) throws

AnalysisEngineProcessException {
3 PipelineUtil .setAnnotationWhiteList(Lists.newArrayList("informationExtraction.
4 lexiaTypes. basicEntities .Location"
5 // All other types are added here
6 )) ;
7

8 pipe.process(jCas);
9 try {

10 jCas = jCas.getView(NETransformer.LEXIA_TYPES_VIEW);
11 }
12 catch(Exception e) {
13 e.printStackTrace();
14 }
15 PipelineUtil .getAnnotationWhiteList().clear();
16 PipelineResult result = createAnnotationStructures(article);
17 return result ;
18 }

In the lines 3 to 6, all types being created during the pipeline, are added
to a annotation white list. This is necessary, because Lexia is configured to
only store annotations being white-listed. This is the case in order to prevent
accidental storage of unwanted annotations. The actual pipeline is invoked in
line 8. As already mentioned, the annotator classes work on a specific CAS
view. This view is extracted in line 10. Afterwards the annotation white list
is cleared before the actual annotation structures are created.

Accessibility from the REST API

After explaining the implementation of the concrete GermaNERPipeline, the
remainder of this section discusses how this pipeline is made available to the
frontend via the REST API. The respective endpoint is /api/semanticanal-
ysis/pipeline. This endpoint routes the request to the PipelineController ’s
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function runNERPipeline. The method parses the JSON body where it ex-
tracts the documents to be processed as well as the pipeline. It figures out the
type of each document and consolidates all documents in a list of LegalDoc-
uments. Afterwards a DocumentCorpus is created by utilizing this list. The
corpus is responsible to process itself with the pipeline. For that reason, the
function processCorpusWithPipeline iterates over each document within the
corpus and utilizes the PipelineExecutor in order to perform the NER task.

Listing 5.14: Excerpt of the method processCorpusWithPipeline of Document-
Corpus

1 public JSONArray processCorpusWithPipeline(String pipeline) {
2 int pipeNr;
3 // Retrieve the corresponding pipeline number
4

5 JSONArray returnObject = new JSONArray();
6 while(!corpusElements.isEmpty()) {
7 LegalDocument document = corpusElements.get(0);
8 Predicate<Article> articlePredicate = x −> !x.filtersApply(−1, −1, "");
9 try {

10 document = new PipelineExecutor().runPipeline(document, null, pipeNr,
articlePredicate, true);

11 // Create the return object for this document
12 corpusElements.remove(0);
13 }
14 catch(Exception e) {
15 e.printStackTrace();
16 return null ;
17 }
18 }
19 return returnObject;
20 }

The pipeline invocation is shown in line 10 of the Listing 5.14. Before that,
the function figures out the pipeline number of the requested pipeline, which
is required by the PipelineExecutor. The remainder of the method assembles
the JSON response, which is just forwarded by the PipelineController to the
UI. The structure of such a response is depicted in Listing 5.15.
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Listing 5.15: Example response for the /api/semanticanalysis/pipeline request
1 [
2 {
3 "legalDocumentId" :"1",
4 " articleEntities " : [
5 {
6 " articleId " : "11",
7 " entities " : [
8 {
9 "coveredText" : "TUM",

10 "legalDocument" :"1",
11 " article " : "11",
12 "begin" : "10",
13 "end" : "12",
14 "types" : "Organisation",
15 "annotationId" : "111"
16 }
17 ]
18 }
19 ]
20 }
21 ]

The response includes one entry per processed legal document. Hereby each
entry contains the id of the document (legalDocumentId)as well as another
attribute articleEntities. The attribute compromises one entry in its array for
each article. Again, each entry reveals the articleId along with an attribute
entities. That attribute has one entry per created annotation.

5.1.3.2 DBpedia Spotlight

NFR06 from Chapter 4.4.2 requires the integration of DBpedia Spotlight as one
NER technology. DBpedia Spotlight has been already introduced in Chapter
4.1.2.2. This section deals with the integration into the prototypical imple-
mentation of this work.
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Lifecycle of DBPediaPipeline

One important aspect of software engineering is consistency within an applica-
tion or component. Hence, the life-cycle of the DBPediaPipeline orients oneself
by the one of the GermaNERPipeline (see first Paragraph of 5.1.3.1). In fact,
its life-cycle mirrors the life-cycle form the GermaNERPipeline (cf. Figure
5.2).

Implementation of DBPediaPipeline

In contrast to the life-cycle of this pipeline, the implementation differs quite
a bit from the pipeline utilizing GermaNER. While the setup function of DB-
PediaPipeline as well as preArticle is exactly the same, assemblePipeline and
initCas provide their own distinct implementations.
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Listing 5.16: Excerpt of assemblePipeline from DBPediaPipeline
1 public AnalysisEngine assemblePipeline(LegalDocument document, String[] rutaScripts,

String text) throws ResourceInitializationException, IOException,
InvalidXMLException {

2 AnalysisEngineDescription spotlightTagger =
createEngineDescription(SpotlightAnnotator.class,
SpotlightAnnotator.PARAM_CONFIDENCE, 0.5f,
SpotlightAnnotator.PARAM_ENDPOINT,
"http://model.dbpedia−spotlight.org/de/annotate");

3

4 // Create engines to transform to lexia typesystem
5 AnalysisEngineDescription neTransformerDesc =

createEngineDescription(DBPediaNETransformer.class,
DBPediaNETransformer.FULL_TEXT, text);

6 AnalysisEngineDescription personDesc =
createEngineDescription(PersonAnnotator.class, PersonAnnotator.VIEW,
NETransformer.LEXIA_TYPES_VIEW);

7 // Create the other AnalysisEngines
8 AnalysisEngineDescription transformationDesc =

createEngineDescription(neTransformerDesc, personDesc, organisationDesc,
locationDesc, otherDesc, dateDesc, moneyDesc);

9

10 // Put together final pipeline
11 AnalysisEngineDescription pipeDesc = createEngineDescription(spotlightTagger,

transformationDesc);
12 AnalysisEngine pipe = createEngine(pipeDesc);
13

14 return pipe;
15 }

The source code in Listing 5.16 shows an excerpt of the source code of assem-
blePipeline. Line 2 already defines the AnalysisEngine spotlightTagger. The
class SpotlightAnnotator which is used in that step, is provided by DBpedia
Spotlight. As already described in Chapter 4.1.2.2, the API offers various
configuration parameters. Those parameters are available in the interface of
SpotlightAnnotator, too. A confidence of .5 has been chosen. This specific con-
fidence was picked, based of several tests. Other than the actual API endpoint,
no configuration is provided. For the sake of consistency, obviously the same
type system as used by the GermaNERPipeline shall be utilized for the final
annotations. That is the reason why line 5 to 8 create the AnalysisEngines for
this transformation process, similar to GermaNERPipeline. In fact, the ap-
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proach is the same, incorporating the equal amount of pattern and annotator
classes. However, a specific class is required for populating the patterns, that
is DBPediaNETransformer (please have a look at Appendix B.3 for further
information). This is justified by the fact that SpotlightAnnotator uses a dif-
ferent type-system than NERAnnotator from GermaNER. The final pipeline
is assembled in line 12. According to the life-cycle, the setup function calls the
method initCas, once the pipeline is created. Only the article text is assigned
to the jCas object, created via UimaUtil, in that initCas function. No addi-
tional CAS views are required for this pipeline, other than the resulting lexia
types view, because the SpotlightAnnotator is able to process the native text.
The process method, invoking the actual pipeline, again is totally similar to
the one of GermaNERPipeline.

Accessibility from the REST API

As described in Chapter 4.5.5, all NER pipelines use the same API endpoint.
The only difference between the pipelines is the different pipeline name, which
is sent in the request body. As a result, no additional description of the
accessibility is required at this point. The path from the user’s request to the
pipeline is the exact same as it has been shown for the pipeline incorporating
GermaNER (cf. third Paragraph in Section 5.1.3.1).

5.1.3.3 Templated

According to NFR07 in Chapter 4.4.2, templated NER is the final approach
to NER in the course of this work. The implementation of that approach is
discussed in this section.

Mechanis behind templated NER

The technique behind templated NER has not been discussed yet, this is done
in this paragraph. The main idea of templated NER is, as elaborated on in
Chapter 4.1.4, that each legal contract is based on a template. When this
template is available, we can use it to extract the NEs which need to be filled
when creating a specific contract instance.
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Listing 5.17: Example sentence from a template
Vertragsgegenstand ist die Lieferung von insgesamt −−Verkaufsprodukt.Menge−− Stück

−−Verkaufsprodukt.Name−− des Herstellers −−Verkaufsprodukt.Hersteller−−.

A possible example of a sentence from such a template is shown in Listing 5.17.
For the placeholders, a concept has been used, where two dashes followed by
some word ensued by another two dashes indicate a NE. With other words,
the following regex highlights a placeholder "(–)*.(–)". During the contract
creation process, such a template may be filled as follows.

Listing 5.18: Example sentence from a instantiated template
Vertragsgegenstand ist die Lieferung von insgesamt 12 Stück MacBook Pros des

Herstellers Apple.

Listing 5.18 depicts an instantiated template. The goal of a templated NER
approach, is to extract the three NEs: (1) 12, (2)MacBook Pros, and (3) Apple.
By comparing the template and the instance, it is exposed that those three NEs
are the only difference between the two sentence. That is already the concept
behind templated NER, which is implemented in the course of this study.
In order to implement it, Google’s Diff-Match-Patch37 (DMP) algorithm is
utilized. The algorithm is based on Myer’s diff algorithm[98]. When executing
the algorithm, only pairs of differences augmented by the diff-option (equal,
insert, and delete) are returned. The DiffController utilizing this algorithm,
only return the pair of strings, containing the placeholder value along with the
actual value of the found NE.

Furthermore, the DiffController offers a function findTemplateToArticleIn-
stance which returns the appropriate template to a given article.

37http://code.google.com/archive/p/google-diff-match-patch
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Listing 5.19: Method findTemplateToArticleInstance of the DiffController
1 public static String findTemplateToArticleInstance(String id, String instanceContent) {
2

3 List<String> templateCandidates = retrieveMoreArticlesLikeThis(id);
4

5 List<String> instanceList =
Arrays.asList(instanceContent.split(TOKENIZATION_REGEX));

6

7 String mostPromisingTemplate = "";
8 int mostPromisingTemplateLCS = −1;
9

10 for (String templateCandidate : templateCandidates) {
11 List<String> templateList =

Arrays.asList(HtmlUtil.convertToPlaintext(templateCandidate).split("
"));

12

13 List<String> result =
org.apache.commons.collections4.ListUtils.longestCommonSubsequence(templateList,
instanceList);

14

15 Logger.info("LCS Length: " + result.size()) ;
16

17 if ( result . size () > mostPromisingTemplateLCS) {
18 mostPromisingTemplateLCS = result.size();
19 mostPromisingTemplate = templateCandidate;
20 }
21 }
22

23 return mostPromisingTemplate;
24 }

Listing 5.19 includes the code of this function. Line 3 of the source code
retrieves initially all possible template candidates. This is done by incorporat-
ing Elasticsearch’s More Like This (MLT) query. Each returned article is then
searched by the placeholder pattern. If it contains at least one placeholder
pattern, it is a potential template candidate. Before returning the final candi-
date list to findTemplateToArticleInstance, the candidates are ordered by the
MLT score. Afterwards for each template candidate, the longest common sub-
sequence with the article instance is calculated. Finally, the most promising
template is returned.
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Lifecycle of TemplatedNERPipeline

Just like DBPediaPipeline, also TemplatedNERPipeline is based on the exact
same life-cycle as GermaNERPipeline (cf. Figure 5.2).

Implementation of TemplatedNERPipeline

In comparison to DBPediaPipeline, the implementation of TemplatedNER-
Pipeline even differs greater from GermaNERPipeline. The setup function,
the method to initialize the CAS object initCas as well as preArticle remain
the same, while assemblePipeline is quite a bit different, as illustrated in List-
ing 5.20.

Listing 5.20: The method assemblePipeline of TemplatedNERPipeline
1 public AnalysisEngine assemblePipeline(LegalDocument document, String[] rutaScripts,

String text) throws ResourceInitializationException, IOException,
InvalidXMLException {

2 AnalysisEngineDescription personDesc =
createEngineDescription(PersonNamedEntityDiffAnnotator.class,
PersonAnnotator.IGNORE_TAGS, true);

3 AnalysisEngineDescription organisationDesc =
createEngineDescription(OrganisationNamedEntityDiffAnnotator.class,
OrganisationAnnotator.IGNORE_TAGS, true);

4 AnalysisEngineDescription locationDesc =
createEngineDescription(LocationNamedEntityDiffAnnotator.class,
LocationAnnotator.IGNORE_TAGS, true);

5 AnalysisEngineDescription otherDesc =
createEngineDescription(OtherNamedEntityDiffAnnotator.class,
OtherAnnotator.IGNORE_TAGS, true);

6 AnalysisEngineDescription transformationDesc =
createEngineDescription(personDesc, organisationDesc, locationDesc,
otherDesc);

7

8 // Put together final pipeline
9 AnalysisEngine pipe = createEngine(transformationDesc);

10

11 return pipe;
12 }
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Even though the function itself only creates the AnalysisEngines to annotate
the article text based on patterns, different annotator classes are used. This is
necessary due to the mechanics behind templated NER. As already explained
in the previous paragraph (first Paragraph of 5.1.3.3), the templated NER
is based on Google’s DMP algorithm and only returns a list of differences,
whereas a difference consists of the two different text phrases. In order to
create annotations for these differences (representing NEs), all NEs could be
populated in the respective patterns. However this brings along a big prob-
lem. Imagine a purchase agreement. Obviously such an agreement includes
the number of commercial products. If this number would be 1, and this is
populated into the patterns, in the process of creating the annotations each
occurence of the number 1 is annotated. It is obvious that this would not be
the intended behavior of such a system. Due to that reasoning, specific classes
are created for the annotation of NEs recognized via templated NER. The class
PersonNamedEntityDiffAnnotator is used to explain the functionality of those
annotators, while each type has its own annotator.
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Listing 5.21: Excerpt of PersonNamedEntityDiffAnnotator
1 public class PersonNamedEntityDiffAnnotator extends SegmenterBase {
2

3 public static final String VIEW = "lexiaTypeView";
4 @ConfigurationParameter(name = VIEW, mandatory = false)
5 private String view = null;
6

7 public static final String IGNORE_TAGS = "ignoreTags";
8 @ConfigurationParameter(name = IGNORE_TAGS, mandatory = false)
9 private Boolean ignoreTags = false;

10

11 @Override
12 protected void process(JCas aJCas, String text, int zoneBegin) throws

AnalysisEngineProcessException {
13 // Implementation
14 }
15

16 private boolean checkAnnotationAlreadyFound(List<Annotation>
foundAnnotations, int start) {

17 // Implementation
18 }
19

20 protected Person createPersonAnnotation(JCas aJCas, final int aBegin, final int
aEnd, String type) {

21 // Implementation
22 }
23 }

Listing 5.21 shows an excerpt of the PersonNamedEntityDiffAnnotator. The
structure of the class conforms to the one of the simple annotators, used by the
GermaNERPipeline and DBPediaPipeline. The difference is the implementa-
tion of the process method (Listing 5.22).
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Listing 5.22: Excerpt of the process method from PersonNamedEntityDiffAn-
notator

1 @Override
2 protected void process(JCas aJCas, String text, int zoneBegin) throws

AnalysisEngineProcessException {
3 // Check which view to use . . .
4

5 List<Annotation> foundAnnotations = new ArrayList<>();
6 List<NamedEntityDiff> entities = PersonPatterns.getPersonPatternWithContext();
7 for(NamedEntityDiff entity : entities ) {
8 Pattern personPattern = Pattern.compile(entity.getNamedEntity());
9 Matcher m = personPattern.matcher(text);

10 while(m.find()) {
11 if (m.start() == m.end() ||

checkAnnotationAlreadyFound(foundAnnotations, m.start()) == true)
continue;

12

13 Boolean ignoreAnnotation = false;
14 // If ignoreTags is true, ignore those . . .
15

16 String foundPattern = text.substring(m.start(), m.end());
17 ignoreAnnotation = true;
18 Pattern contextPattern = Pattern.compile(entity.getContext());
19 Matcher contextMatcher = contextPattern.matcher(text);
20 while(contextMatcher.find()) {
21 if (contextMatcher.start() <= m.start() && contextMatcher.end() >=

m.end()) {
22 ignoreAnnotation = false;
23 }
24 }
25 if (ignoreAnnotation) continue;
26

27 Annotation personAnnotation = createPersonAnnotation(aJCas, m.start(),
m.end(), entity.getType());

28 foundAnnotations.add(personAnnotation);
29 }
30 }
31 }

After checking which view to use for the processing (similar to the approach
in PersonAnnotator and not shown in the listing above), the patterns are ex-
tracted. Hereby, also the class PersonPatterns is used, but this time the func-

104



5 Implementation Phase

tion getPersonPatternWithContext is claimed. The population of the respec-
tive attribute of PersonPatterns, personPatternWithContext is described fur-
ther down, when talking about the process method of TemplatedNERPipeline.
For each NE returned by PersonPatterns, the text of the NE itself is used
to create a pattern. Now the whole article text is searched for this pattern.
Hereby each occurrence is first checked whether it has been already found or
not. Afterwards, it is verified that the NE is not within a HTML tag, in case
the ignoreTags attribute is set to true. The next step is the most important
one and at the same time the biggest difference to the other annotator classes,
introduced so far. The context of the found NE is extracted and used to build
a pattern as well. Then the whole text is searched for this specific context.
Once the context is found, it is reviewed whether the found NE is within that
context in the native text. Just if that is the case, the annotation is created.

Once the pipeline is assembled, it can be invoked by the process function, which
differs a lot from the previous ones. Listing 5.23 depicts the implementation
of this method.
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Listing 5.23: Excerpt of the process method from TemplatedNERPipeline
1 public PipelineResult process(Article article , String text) throws

AnalysisEngineProcessException {
2

3 String instanceContent = text;
4 String template = DiffController.findTemplateToArticleInstance(article.getID(),

text) ;
5 ArrayList<Pair<String, String>> templatedNERResult =

DiffController.determineDifferences(instanceContent, template, false);
6

7 // Clear patterns
8

9 for(Pair<String, String> entity : templatedNERResult) {
10 // Determine the context of each found entity . . .
11

12 NamedEntityDiff diff = new NamedEntityDiff(entity.getKey(),
entity.getValue(), context, startOffset , endOffset);

13

14 if ( diff .getType().contains("Location")) {
15 LocationPatterns.addLocationPatternWithContext(diff);
16 }
17 else if ( diff .getType().contains("Organisation") ||

diff .getType().contains("Organization")) {
18 OrganisationPatterns.addOrganisationPatternWithContext(diff);
19 }
20 else if ( diff .getType().contains("Person")) {
21 PersonPatterns.addPersonPatternWithContext(diff);
22 }
23 else {
24 OtherPatterns.addOtherPatternWithContext(diff);
25 }
26 }
27

28 PipelineUtil .setAnnotationWhiteList(Lists.newArrayList("informationExtraction.
29 lexiaTypes. basicEntities .Location",
30 // Other types added
31 )) ;
32 pipe.process(jCas);
33 PipelineUtil .getAnnotationWhiteList().clear();
34 PipelineResult result = createAnnotationStructures(article);
35 return result ;
36 }
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The first step of process is to determine the suitable template for the current
article. For that reason, findTemplateToArticleInstance of the DiffController
is utilized. This function is based on Elasticsearch’s MLT query. Once the
template is ascertained, the actual differentiation can be performed. For this
purpose, DiffController ’s determineDifferences is invoked. The resulting list
of pairs of strings is stored in templatedNERResult. As already mentioned,
before each NE can be populated via patterns, the context of a NE need to
be identified. A window of -10 to +10 characters is used as the context. The
source code of this task is not revealed in Listing 5.23, because it is way to
complex to be inserted in such a thesis. This is due to the various exceptions,
which need to be regarded, such as having two NEs within one context. After
the context is determined, line 12 creates the NamedEntityDiff object which
holds next to the content of a NE, the type of a NE, the actual value, as well as
start offset and end offset. Depending on the type, the NE can be populated
via the existing pattern classes. The remainder of the process method executes
the pipeline and returns the result.

Accessibility from the REST API

Exactly as for the DBPediaPipeline, the same route utilized by GermaNER-
Pipeline is used for the TemplatedNERPipeline, too. This implies that the
structure of the JSON response remains also untouched (cf. Listing 5.15 in
Section 5.1.3.1).

5.1.4 NED

NED based on a templated approach was already briefly introduced in Chapter
4.2.3. This section deals with the actual implementation of such an approach.
In order to perform the disambiguation process, models of contracts are nec-
essary. Hence, Section 5.1.4.1 discusses the semantic models, which are used
for that purpose. Then, the actual disambiguation component is elaborated in
Section 5.1.4.2.
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5.1.4.1 Semantic Models

The elicitation of NFR07 in Chapter 4.4.2 asks for the utilization of the mod-
eling domain from Oppmann’s[106] implementation concerning a modeling en-
vironment. In the course of this work, the class Model, representing semantic
models of legal documents, has been extended to suit the needs for this work
as well.

Listing 5.24: Excerpt of the Model class
1 public class Model extends Entity {
2

3 private String scWorkspaceId;
4 private String id ;
5 private String title ;
6 private Date createdAt;
7 private Date updatedAt;
8 private String jsonModelDefinition;
9 private String jsonDocumentReferences;

10 private Boolean contractModel;
11

12 public final static String SC_TYPE = "Model";
13 public final static String SC_TYPE_PLURAL = "Models";
14

15 // Constructor, as well as Getter and Setter
16

17 // Methods to store, update, delete and retrieve Models
18 }

An excerpt of the Model class is shown in Listing 5.24. Next to the code shown
in the listing above, the class includes a constructor, getter and setter methods,
and various functions to store, update and retrieve models. The Model offers
way more functionality than required in this study. That is the reason, why
a new attribute contractModel is introduced. This attribute is set to true, for
all models, representing a contract and thus being used in the disambiguation
process. Furthermore, the existing attributes id, title, createdAt, and update-
dAt are self-explanatory. As already discussed in Chapter 4.4.2 (cf. NFR08
and NFR09), both, Elasticsearch and SocioCortex shall be used for the storage
of models. This was already supported by Oppmann’s implementation. The
Model as it is described here, is stored in the Elasticsearch database. Hereby,
the jsonModelDefinition contains the actual semantic definition of a model
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along with all the instances of such a model. However, in the Model and thus
in Elasticsearch, it is only depicted as a JSON object. A model is created and
updated in the UI by means of JointJS (see Section 5.2 for detailed informa-
tion). The resulting definition is represented by the jsonModelDefiniton. This
JSON representation is then mapped to entities of SocioCortex (as described
in Chapter 4.5.3) and stored there. The scWorkspaceId stores the id of the
respective SocioCortex workspace. In order to store and retrieve the mod-
els in the SocioCortex, the SocioCortexControllerV2 created by Oppmann is
utilized.

5.1.4.2 Disambiguation Component

Unfortunately, the disambiguation component is not implemented as an Apache
UIMA component and thus does not reflect a pipeline. The way the commu-
nication within an Apache UIMA pipeline is handled, is not beneficial for the
purpose of linking NEs from a legal contract to a semantic model. This is
because these pipelines are designed to perform annotation tasks. To be more
precise, a CAS object only stores information about different annotations con-
cerning its text, but no information regarding external entities, such as the
Model. Nonetheless, the extensibility demanded by NFR03 is respected in this
implementation.

5.1.4.2.1 Implementation

A class only to perform linkings by means of different approaches is created,
that is EntityLinker. Yet it only covers one method, which is used to link the
NEs of a contract, which were extracted via templated NER, to a semantic
contract model. An excerpt of this function is shown in Listing 5.25.
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Listing 5.25: Excerpt of the method linkModelToContractTemplated
1 public static Model linkModelToContractTemplated(Model model, JsonNode document,

JsonNode entities) {
2 try {
3 JSONObject modelJson = new

JSONObject(model.getJsonModelDefinition());
4 JSONArray cells = modelJson.getJSONArray("cells");
5

6 for( int i = 0; i < cells .length() ; ++i) {
7 JSONObject payload =

cells.getJSONObject(i).getJSONObject("payload");
8 String typeTitle = payload.getString("title");
9 JSONArray attributes = payload.getJSONArray("attributes");

10 JSONObject instance = new JSONObject();
11 for( int j = 0; j < attributes.length() ; ++j) {
12 JSONObject attribute = attributes.getJSONObject(j);
13 String attributeName = attribute.getString("name");
14 for(JsonNode entity : entities ) {
15 String [] nodes =

entity.get("entityType").toString(). replaceAll("−−",
"").replaceAll("\"", ""). split ("\\.");

16 if (typeTitle.equals(nodes[0]) &&
attributeName.equals(nodes[1])) {

17 instance.put(attributeName,
entity.get("annotationId").toString() . replace("\"",
""));

18 }
19 }
20 }
21

22 instance.put("SC_NAME", typeTitle + "_" +
document.get("id").toString().replaceAll("\"", ""));

23 // Check whether a link for that specific Model and Contract already
exist and if so, replace the link

24 }
25

26 // Transform back to JSON representation and store
27 }
28 catch(Exception e) {
29 e.printStackTrace();
30 return null ;
31 }
32 return model;
33 }
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The first part of the method linkModelToContractTemplated, dismissing some
trivial code to check whether this contract is already linked to that model,
reveals the code for the actual linking. The function retrieves the semantic
Model, the legal contract represented in JSON, as well as all recognized NEs
also in the JSON format. First, the jsonModelDefiniton is traversed by cells.
Each cell represents one type. Second, each type is traversed by attributes.
That is the place where the disambiguation takes place, because one attribute
must be linked to one NE. As already described in Chapter 4.2.3, the key idea
of this disambiguation approach is the following. When a contract model is
defined, types as well as attributes are required. A conceptual JSON repre-
sentation of such a model is shown in Listing 5.26.

Listing 5.26: Conceptual example of a model
[

{
"type" : "Tenant"
"attributes" : [

"Firstname",
"Surname"

]
},
{

"type" : "Landlord"
"attributes" : [

"Firstname",
"Surname"

]
}

]

In this example, a contract includes a tenant, as well as a landlord. The tenant
and the landlord are types. Both of these two types, have two attributes: (1)
first name, and (2) surname. Now this just needs to be respected in the creation
process of a template.

Listing 5.27: Example of a sentence from a template
1 −−Landlord.Firstname−− −−Landlord.Surname−− rents his Apartment to

−−Tenant.Firstname−− −−Tenant.Surname−−.

111



5 Implementation Phase

A possible sentence from a template is revealed in Listing 5.27. Through the
usage of the type and attribute names, defined in the model, the links can be
already disambiguated in the template creation process. Now the code from
line 14 to 19 of Listing 5.25 only needs to find the NE with the type name
corresponding to the current attribute. Once this is done for each attribute,
the JSON representation of the model definition must be transformed back for
the storage in SocioCortex. This is depicted in Listing 5.28.

Listing 5.28: Excerpt of the method linkModelToContractTemplated (contin-
ued)

1 public static Model linkModelToContractTemplated(Model model, JsonNode document,
JsonNode entities) {

2 try {
3 // Disambiguate and set the actual links
4

5 JointJSModelConverter converter = new JointJSModelConverter();
6 ObjectMapper mapper = new ObjectMapper();
7 JsonNode jsonModel = mapper.readTree(modelJson.toString());
8

9 model.setJsonDocumentReferences(references.toString());
10 converter.saveInstancesInSocioCortex(jsonModel, model);
11 }
12 catch(Exception e) {
13 e.printStackTrace();
14 return null ;
15 }
16 return model;
17 }

First, a mapper is used to read the JSON representation and to transform
it back to a JsonNode. Second, the document references are updated at the
model, before the JointJSModelConverter is utilized to save the instances of
the model back to SocioCortex.

5.1.4.2.2 Accessibility from the REST API

In order to make the disambiguation component available to the front-end, a
EntityLinkingController is implemented. In detail, the function linkTemplat-
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edEntities is bind to the route /api/semanticanalysis/entitylinking/templated-
ner.

Listing 5.29: Excerpt of the method linkTemplatedEntities
1 public static Result linkTemplatedEntities() {
2 String linkingApproach =

request().body().asJson().findValue("approach").asText();
3 String modelId = request().body().asJson().findValue("model").asText();
4 JsonNode contract = request().body().asJson().findValue("document");
5 JsonNode entities = request().body().asJson().findValue(" entities ");
6 Model contractModel;
7

8 if (linkingApproach == "automatic") {
9 contractModel = Model.determineModelForContract(entities);

10 }
11 else if (modelId != null) {
12 contractModel = Model.loadFromElasticSearch(modelId);
13 }
14

15 contractModel = EntityLinker.linkModelToContractTemplated(contractModel,
contract, entities);

16

17 JSONArray returnObject = new JSONArray();
18 // Create the JSON response
19

20 catch(Exception e) {
21 e.printStackTrace();
22 return internalServerError(e.toString()) ;
23 }
24

25 return ok(returnObject.toString());
26 }

This function is partially shown in Listing 5.29. After extracting the required
arguments from the JSON body, the model which shall be linked is determined.
The user can either specify the model in the UI, or choose the automatic iden-
tification. Therefore the function determineModelForContract determines the
suitable model, based on the best match in terms of equal names between types
and attributes of the model and the types of the recognized NEs. Afterwards
the disambiguation is invoked in line 15. Then only the JSON response is built
before it is returned to the UI.
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5.2 UI

After describing the back-end implementation, the front-end is discussed in this
section. Figure 5.3 shows the components of the UI. They are separated in
three categories: (1) Controllers along with corresponding views, (2) services,
and (3) directives. Hereby, the majority of the components are reused from
Oppmann[106], even though most of those components were adapted to fit the
needs of this thesis. The following sections describe these components in closer
detail.

Figure 5.3: Components of the front-end implementation

Source: Own illustration

5.2.1 Model Environment

This section describes the front-end implementation concerning components
related to the creation, update, and deletion process of semantic models.
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5.2.1.1 Services for the Model Environment

AngularJS services are a nice way to centralize back-end requests in a proper
interface. Hence, the front-end utilizes two services, which provide API re-
quests as well as interfaces to functionalities of other libraries.

SemanticModelContractService

As already mentioned in Chapter 4.5.2, the JointJS JavaScript library is used
to graphically represent contract models. Furthermore, the library provides
the JSON representation of such a model, which is mapped to SocioCortex.
Oppman created a custom AngularJS service to encapsulate the necessary
JointJS functionality and to expose only a well-defined interface. Since the
modeling environment of Oppmann is far more complex than the one used for
this work, the class has been modified for the purpose of this thesis. For a
detailed description about the implementation, please refer to Oppmann[106,
p. 81-82].

SemanticModelDataService

The SemanticModelDataService only encapsulates all requests to the back-end
component of the modeling component. This allows the different controllers to
use a well-defined and centralized interfaces, rather than creating each request
manually again.

5.2.1.2 Model Management

The Model Managment Environment component provides several AngularJS
controllers and views, as well as modal dialogs. This component compromises
also a directive. In this section, the different views and their functionality are
discussed briefly. Moreover, screenshots are provided for those views.
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SemanticModelListCtrl

The SemanticModelListCtrl provides a tabular overview over all semantic mod-
els stored in Lexia, which relate to contracts. This view serves as an entry
point, from which the user can either navigate to the model editor, or import
and export existing models. Furthermore, the user can create initially a model
as well as delete old models. Figure 5.4 provides a screenshot of this view.

Figure 5.4: Screenshot of the model overview

Source: Own screenshot

ModalAddNewSemanticModelCtrl

This view is presented as a modal view which is used to create new semantic
models. It just shows a text box in which the user must enter the name of
the model. Then the ModalAddNewSemanticModelCtrl creates the model and
sends it to the back-end. This view is shown in Figure 5.5.

Figure 5.5: Screenshot of the view to create a model

Source: Own screenshot
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ObjectDiagramDirective

This directive has been inherited by Oppmann[106, p. 91] and is used without
any changes. Even though the view is used within the view to edit semantic
models, it belongs to theModel Management Environment component, because
it does not allow to change models. A screenshot of this diagram can be seen
in Figure 5.7 in Section 5.2.1.3.

5.2.1.3 Model Definition

In order to define the semantic models, the Model Definition Environment is
used. This component also provides several AngularJS controllers and views, as
well as modal dialogs. The different views and their functionality are discussed
in this section along with some selected screenshots.

SemanticModelEditCtrl

The SemanticModelEditCtrl is one of the main components of the whole mod-
eling environment. It enables the definition and refinement of semantic models.
Hence, it has a dependency to the SemanticModelContractService and regis-
ters callback functions for different events. The SemanticModelEditCtrl can
load and save semantic models to the back-end. For the process of defining
semantic models, the remaining controllers and views of this section are incor-
porated. A screenshot, revealing the view of this controller is shown in Figure
5.6.

The view consists of three areas. On the left hand side, a visual representation
of the semantic model is shown. Upon clicking on a specific type, the middle
area depicts the type along with the corresponding attributes. In case an in-
stance to that model already exists, the attributes are filled with the respective
values of the first instance. Different instances can be selected from the object
diagram in Figure 5.7. The right hand side provides control buttons, to add
new types and to save or reset the model.
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Figure 5.6: Screenshot of the model edit view

Source: Own screenshot

Figure 5.7: Screenshot of the object diagram

Source: Own screenshot

ModelCreateContractTypeCtrl

ModelCreateContractTypeCtrl represents a modal dialog which enables the user
to add new types for a given semantic model. This modal view is invoked by
clicking on the Add Type button in Figure 5.6. A screenshot of this modal
view is depicted in Figure 5.8.
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Figure 5.8: Modal view to create a model type

Source: Own screenshot

ModelCreateContractAttributesCtrl

This view is also a modal view that opens a dialog in which the user can
create and modify attributes for a given type. Figure 5.9 shows a screenshot
of this view. The dialog can be reached by selecting Edit Attributes, while
right clicking on a type.

Figure 5.9: Modal view to create a type attribute

Source: Own screenshot

ModelContractSummaryCtrl

Upon double clicking on a type, theModelContractSummaryCtrl view is opened
modally. It shows a summary of all attributes of the given type, as shown in
Figure 5.10.
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Figure 5.10: Modal view to summarize a given model type

Source: Own screenshot

5.2.2 Pipeline Execution

The final section of the chapter about implementing the component to se-
mantically analyze and structure legal contracts deals with the UI to execute
pipelines. In fact this component only consists of the PipelineSelectionCon-
troller. However, the entry point for that process is the ContractsController.
This controller was already implemented in Lexia in order to gain access to all
contracts stored in the system. A screenshot of this view is provided in Figure
5.11.

Figure 5.11: View to select a contract

Source: Own screenshot
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Once the user selects at least one contract (several contracts can be selected
as well), the tag icon is shown in the footer of the list. A click on this icon
invokes the PipelineSelectionController view, shown in Figure 5.12.

Figure 5.12: Screenshot of the pipeline selection view

Source: Own screenshot

This view reveals the selected document(s), which are subject to be processed
by a NER pipeline. Furthermore, the user can select the preferred technique,
depending on the pipelines available by the system. One selected, the Run
Pipeline button shows up and hence, the pipeline can be executed. Figure
5.13 shows the view after a NER pipeline is finished successfully.

Figure 5.13: Screenshot of the pipeline selection view after execution

Source: Own screenshot

Depending on the selected NER approach, the linking options are shown as
well after the pipeline is done. As shown in Figure 5.14,

The user must select one of the already processed contracts, which shall be
used to disambiguate its NEs to a model. In terms of model selection, the user
can either invoke an automatic model selection, or manually select the desired
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Figure 5.14: Screenshot of the view to configure the disambiguation

Source: Own screenshot

one. Afterwards the linking can be started. This set of screenshots represents
the process incorporating templated NER and thus, only templated NED is
available for selection. The results of the NED process, are shown in Figure
5.15.

Figure 5.15: Screenshot of the view revealing the results of NED

Source: Own screenshot

In this final screen of the pipeline execution, the user can navigate directly to
the processed document. Therefore the button Goto Document exists.

In Figure 5.16 the legal contract view is shown. The right area of this screen
offers an accordion called Semantic Model. The structured contract is shown
upon clicking on this button.
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Figure 5.16: Screenshot of the contract view along with the structured seman-
tic information

Source: Own screenshot
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This evaluation chapter compromises two key sections. The first deals with
a qualitative assessment of the prototypical implementation created in the
course of this thesis. The second performs a quantitative evaluation of the
different NER approaches, as well as of the NED technique incorporated in
this implementation.

6.1 Qualitative

6.1.1 Idea

For the qualitative assessment of the prototypical implementation semi struc-
tured expert interviews are conducted. The main idea behind these interviews
is to get detailed information about the usability and utility of the components
being implemented. Furthermore, these interviews are used to obtain typical
information demand of legal practitioners. Also typical problems from the
view of legal experts can be experienced. This knowledge can help for future
work, to tailor an implementation even better towards the user and business
needs.

6.1.2 Interview Guideline

The interview guideline is revealed in Appendix C.1. It is split into four
parts.

At first, the background of the interview partner is elicited. Who is the em-
ployer, which position does the partner hold, in which legal domain is the
interview partner busy, and if there is some affinity to IT.
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In the second part, questions to obtain the data on which the expert is working
on are asked. This is necessary not just to evaluate whether the interview
partner’s answers are relevant for the evaluation, but also to learn about the
information demand of such a legal expert. This knowledge can be utilized for
future work a lot.

The third part specifically relates to IE and NER. The interview partner is
asked whether he already utilizes tools to manage contracts and is already
confronted with the results of this work. It is also elicited, whether a structured
view of semantic information of a legal contract helps.

The final part of the interview consists of a live demo. This was used to gain
valuable feedback about the actual implementation. Of course, this part was
only conducted for person to person interviews, but not for phone interviews.

6.1.3 Selection of Interview Partners

The experts were selected mainly based on their occupational task. As long
as the person is a legal practitioner, working a lot with contracts, the person
was already a valuable resource. Different legal experts being project partners
from previous projects were contacted, as well as random lawyers in the Munich
area. At the end, three interviews were conducted.

6.1.4 Outcome

The experts mentioned that they are working on contracts about 70 to 80% of
their working hours. This is pretty important for this study, in order to be able
to gain valuable information. All three experts use already tools to support the
management of legal contracts. However, these tools mainly regard to storage
of documents, but not semantic analysis or other approaches, incorporating
NLP.

In fact, all three experts had basically the same opinion about the developed
system. They like the idea of recognizing NEs and using these to structure
legal contracts. However, if only mundane structures can be created to reveal
simple attributes like the name of the tenant or landlord in a rental agreement,
it is not that useful. The reasoning behind this statement is, that a legal
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expert is able to extract this information pretty fast by means of his trained
eye. Extracting more detailed information such as the rental object along with
properties like rental area or rent, would be already very helpful. Even more
valuable would be the extraction and disambiguation of complex clauses such
as liability clauses or change of control clauses.

Furthermore, the interview partners were in agreement about the difficulty to
generalize the information demand of legal experts and lawyers. They told
us that the relevant information heavily depends on the actual domain, but
even more on the certain case. Even though all interview partners could exhibit
decent IT affinity, they were not sure whether and how such an implementation
could look like.

To summarize this qualitative evaluation, it can be said that such a system goes
into proper direction, but further research is required to create more powerful
and helpful system utilizing NER and NED. Such a development approach
should be highly intertwined with incorporating legal experts to continuously
exchange information and adapt the system based on the business needs.

6.2 Quantitative

After the qualitative evaluation already gave some nice insights, a quantitative
assessment is required to properly determine the performance of the system,
but also to be able to compare the different techniques against each other.
Furthermore, such a quantitative evaluation is necessary for future work. Ex-
tensions on this study can easily be compared to the existing implementations
based on the evaluation performed in this section.

6.2.1 NER

The first NLP task was to identify NEs. An introduction about the approaches
to this topic is provided in Chapter 4.1. In the following, the evaluation
method, the data used, as well as the results of the evaluation are described.
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6.2.1.1 Evaluation Method

In terms of evaluating NER approaches, each of the three implemented tech-
niques is first evaluated, before the obtained results are compared. Different
evaluation metrics exist for the evaluation of NER systems[100]. The assess-
ment is basically to check the system’s ability on finding the boundaries of
names and their correct types. When evaluating a NER system this way, there
is one big problem that is caused by the fact that NER is a sequence labeling
task[77].

Listing 6.1: Example to illustrate the problem with evaluating NER
The landlord of this flat is [PER Ingo Glaser].

The simple sentence from Listing 6.1 can easily demonstrate this issue. Only
a single NE is contained in this sentence, that is Ingo Glaser. A system,
recognizing only one of the two tokens Ingo as a NE has not fulfilled the task
of NER perfectly. The question when evaluating such a system is, how to
deal with such a partial NE recognition. Of course the problem can be also,
that a system tags more tokens than it should, so the span exceeds the NE.
Incorporating these boundary errors, can be quite challenging when evaluating
NER systems. The evaluation in this work only approves a tagged span, when
it is equal to the span enclosing the actual NE, with other words, perfect
matching is required.

For the evaluation the state of the art approach of IR and IE has been used.
This means that a confusion matrix is created for every approach. Based on
this confusion matrix, each NE type is evaluated first[77]. For that the con-
fusion matrix is used to count the True Positives (TP), the False Positives
(FP), the rue Negatives (TN), and the False Negatives (FN) of each NE type.
Hereby, the number of properly detected NEs is referred to TP, while anno-
tations which do not reflect an actual NE, are said FP. FNs refer to NEs not
being detected, and the remaining cases are the TN, that is all tokens not
representing a NE and thus being not recognized as one. Those metrics are
determined by creating a table of confusion for each category. Based on that,
the precision, recall, and F1 measure is calculated[104]. Afterwards the overall
measures for each method are determined. Hereby the accuracy is not used,
because it is quite superfluous for a NER system. Just a minority of all tokens
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from a given text represent NEs. Thus, TN of such a system are very high
relatively to the total amount of tokens[77, 117].

All categories used in this implementation are incorporated into the assess-
ment: (1) person (PER), (2) organization (ORG), (3) location (LOC), (4)
money value (MV), (5) date (DA), (6) reference (REF), and (7) other (OTH).
For the evaluation, the following formulas are used.

precision =
TP

TP + FP
(6.1)

recall =
TP

TP + FN
(6.2)

As shown in Equation 6.1, the precision is the ratio of the number of correctly
labeled responses to the total labeled, while recall (Equation 6.2) is the ratio
of the number of correctly labeled responses to the total that should have been
labeled. Equation 6.3 depicts the definition of the F1 measure, which is the
harmonic mean of the two.

F1 = (1 + β2) ∗ precision ∗ recall
(β2 ∗ precision) + recall

(6.3)

F1 = 2 ∗ precision ∗ recall
precision+ recall

(6.4)

Since β1 = 1 is assumed for this evaluation, the formula in 6.4 represents the
F1 measure used in the remainder.

6.2.1.2 Data used

As already mentioned in Section 2.2, data sets for NER barely exist within the
legal domain. As a consequence, the evaluation data set for this work has to be
created manually. Since the focus of this work is semantically analyzing and
structuring legal contracts, an evaluation corpus consisting of contracts would
be a great fit. However, due to a lack of contracts in this study, the evaluation
of the GermaNER pipeline and DBpedia Spotlight pipeline is performed on
judgments. A corpus of 500 judgments from the law of tenancy of the 8th
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Zivilsentat of the German BGH was downloaded from Rechtsprechung im In-
ternet38. A random selection of 20 judgments out of this corpus constitute the
evaluation dataset, used for this assessment. The data set consisted of 25.423
token. Since these judgments were not annotated, a gold standard was created
by hand as well.

Table 6.1: Composition of evaluation data set
NE Types PER ORG LOC DA MV REF OTH O
Count 114 106 45 267 78 310 182 24314

The composition of this data set is shown in Table 6.1. This distribution of
NE types is pretty common for the legal domain. The abbreviations used in
the table, are applied for the rest of this chapter, while O is referring to not a
NE.

Templates do not exist for judgments and hence, the templated NER approach
had to be evaluated on legal contracts. For this reason, 5 different contracts
were selected: (1) a purchase agreement, (2 )a lease contract, (3) an employ-
ment agreement, (4) a lease agreement for commercial premises, and (5) a
GmbH contract. This ended up in a total of 7790 token, including the distri-
bution of NEs as depicted in Table 6.2

Table 6.2: Composition of evaluation data set for templated NER
NE Types PER ORG LOC DA MV REF OTH O
Count 14 8 23 38 23 25 46 7614

6.2.1.3 Assessment

In order to get a bit more accurate results, the evaluation was performed three
rounds for each method. The average values for these three rounds was then
used to answer the following two main questions:

1. Which implemented NER pipeline performs best?

2. Which NE type is recognized best?

3. Which NE type is recognized worst?

38http://www.rechtsprechung-im-internet.de
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Before answering those questions, the results of each method are presented
first.

GermaNER pipeline

The confusion matrix for the pipeline utilizing GermaNER is shown in Table
6.3.

Table 6.3: Confusion matrix for GermaNER implementation
Gold

Response

Tokens PER ORG LOC DA MV REF OTH O
PER 24 0 0 0 0 0 0 0
ORG 0 59 2 0 0 0 0 0
LOC 0 0 14 0 0 2 0 1
DA 0 0 9 229 0 0 0 0
MV 0 0 0 0 62 0 0 0
REF 0 0 2 0 2 261 0 0
OTH 6 9 9 2 7 1 44 7
O 84 38 9 36 7 46 138 24306

The amount of FPs is over all categories, other than other, pretty small. This
leads to the surprisingly high precisions, as shown in Table 6.4. The types
person, organization, date, money value, and reference scored a very high pre-
cision around 1. This is not that surprising for the three last-mentioned types,
because they are based on regex, which typically does not overreact. On the
other side, a lot of NEs were not recognized at all, which explains the under-
whelming recall values. Again, the rule-based approaches (date, money value,
and reference) performed very well, but in particular the recognition of persons
and locations was pretty bad, with a recall of 0.21, respectively 0.31. A nice
observation is the fact, that the system did not classify too many NEs into the
wrong type. Of course, the category other has the worst performance of all
types. The reason behind this, may be that one functionality of that type is
to intercept other types, which somehow fall through their own classifiers.

In summary it can be ascertained that the regex based recognitions worked very
well with a F1 measure between 0.89 and 0.91, while the types recognized by
GermaNER itself only perform with a F1 below 0.5, except for organizations.
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Table 6.4: GermaNER implementation performance
Precision Recall F1F1F1

NE Type

PER 1 0.21 0.35
ORG 0.97 0.56 0.71
LOC 0.82 0.31 0.45
DA 0.96 0.86 0.91
MV 1 0.79 0.89
REF 0.98 0.84 0.91
OTH 0.52 0.24 0.33
Overall 0.98 0.68 0.80

DBpedia Spotlight

Table 6.5 depicts the resulting confusion matrix, when evaluating the DBpedia
Spotlight pipeline.

Table 6.5: Confusion matrix for DBpedia Spotlight implementation
Gold

Response

Tokens PER ORG LOC DA MV REF OTH O
PER 40 0 0 0 0 0 0 0
ORG 0 67 2 0 0 0 0 0
LOC 10 12 28 0 0 0 1 11
DA 1 0 9 229 0 0 0 0
MV 0 0 0 0 62 0 0 0
REF 0 0 1 0 0 261 0 0
OTH 32 25 3 2 8 3 165 137
O 34 4 2 31 8 46 16 24193

The results of extracting rule-based dates, money values, and references are
again pretty good, having a precision between 0.96 and 1. Some NEs of these
types were missed, which is represented by a recall between 0.79 and 0.87.
This is what one would expect when utilizing rule-based approaches for en-
tities, being represented by rather simple structures. The three main classes
performed quite differently. While person has a perfect precision (1), but a
disappointing recall (0.34), location exhibits a poor precision (0.45) along with
a semi recall (0.62). Organization reached the same recall, but a perfect pre-
cision of 0.97. The bad performance of recognizing locations is surprising, as
one would expect that a knowledge base includes many locations. In fact, the
result may be caused by the system’s transformation of DBpedia types to the
Lexia typesystem. The same reason could have caused the very low recall of
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persons. The miscellaneous class has a decent recall (0.91), but a low precision
of 0.44. A knowledge base such as DBpedia constitutes a huge variety of terms
causing that recall, while the precision may be interfered by the transformation
process, too. Nevertheless, the overall performance of this pipeline is typical
for knowledge based systems, having a overall F1 measure of 0.87.

Table 6.6: DBpedia Spotlight implementation performance
Precision Recall F1F1F1

NE Type

PER 1 0.34 0.51
ORG 0.97 0.62 0.76
LOC 0.45 0.62 0.52
DA 0.96 0.87 0.91
MV 1 0.79 0.86
REF 0.99 0.84 0.91
OTH 0.44 0.91 0.59
Overall 0.87 0.87 0.87

Templated

The resulting confusion matrix for the performance of templated NER is shown
in Table 6.7.

Table 6.7: Confusion matrix for templatedNER
Gold

Response

Tokens PER ORG LOC DA MV REF OTH O
PER 11 0 0 0 0 0 0 0
ORG 0 5 0 0 0 0 0 0
LOC 0 3 16 0 0 0 1 0
DA 0 0 0 31 0 0 5 2
MV 0 0 0 0 18 0 1 1
REF 0 0 0 0 0 19 0 0
OTH 0 0 4 6 4 3 34 8
O 3 0 3 1 1 3 5 7603

It is noticeable that the system only annotates a few token which do not
represent any NE. Only two tokens are detected as a date, one as a money
value, and eight as other, which actually do not constitute any NE. The reason
behind this is that the contract templates designate almost each NE as a
placeholder, because NEs are usually specific to a contract instance. However,
sixteen NEs are not detected. Contracts include often terms expressing public
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organizations ore other institutions which are fixed to all contract instances
and thus are already concrete in the template. Those NEs cannot be identified
by the templated NER system. Another conspicuous finding is the amount
of different NE types being recognized as other. This is in the nature of
how templated NER categorizes the NEs. The placeholder name used in the
template is analyzed to determine the type of a NE. Obviously such a name
does not always indicate the type and hence a lot of NEs are categorized wrong.
Nevertheless, templated NER is performing very well. It has an overall F1

measure of 0.92, which is pretty decent. The other F1 measures for the different
NE type performances are all comparable with state-of-the-art systems, as
Table 6.8 reveals.

Table 6.8: Templated NER performance
Precision Recall F1F1F1

NE Type

PER 1 0.79 0.88
ORG 1 0.62 0.77
LOC 0.80 0.84 0.82
DA 0.82 0.91 0.86
MV 0.9 0.86 0.88
REF 1 0.86 0.93
OTH 0.58 0.92 0.71
Overall 0.94 0.91 0.92

The system even performed with a precision of 1 for the types person, orga-
nization, and references. But again, the good performances is based on the
implementation of templated NER. A template is tailored to a specific set of
contracts, which enables a very well NER, as long as only those NEs are of
interest, which are used as placeholders. This evaluation basically regards two
kinds of errors: (1) user errors and (2) system errors. The mistakes made by
the system appear in the form of not recognizing a placeholder in the template
or not being able to extract the context of a placeholder to identify the NE
type. Implicitly also user errors are accounted, when the user does not prop-
erly name a placeholder and thus the system fails to determine the proper NE
type.

This reasoning constraints the value of this evaluation quite a bit. It is not
possible to compare a templated NER system with common NER tools. But
the evaluation shows that the performance of this system is pretty good for its
own purpose.
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Comparison of the Results

(1) Which implemented NER pipeline performs best?

It is not common to compare three systems, whereas one of the systems was
evaluated on a different evaluation data set. However, for this work it was not
possible to evaluate all three approaches on the same data, as already men-
tioned in Section 6.2.1.2. Table 6.9 summarizes the results of this evaluation.

Table 6.9: NER performance of all three system over the evaluation data set
Per-entity F1 Overall

System PER ORGLOC DA MV REF OTH P R F1

Templated .88 .77 .82 .86 .88 .93 .71 .94 .91 .92
GermaNER .35 .71 .45 .91 .89 .91 .33 .98 .68 .8
DBpedia .51 .76 .52 .91 .86 .91 .59 .87 .87 .87

The overall performance of templated NER (F1) clearly exceeds the results
of the pipelines incorporating GermaNER and DBpedia Spotlight. Compar-
ing just the two latter, GermaNER reveals the better overall precision (0.98)
over DBpedia Spotlight (0.87). This is not unexpectedly due to the fact that
knowledge bases consist of a huge variety of different terms, which lead to the
recognition of many tokens actually not representing any NE of interest. On
the other side, the higher overall recall of DBpedia Spotlight (0.87 over 0.68),
is not a surprise either, caused by the same fact. Hence, DBpedia Spotlight
overall outperformed GermaNER (overall F1 of 0.87 over 0.80). Nonetheless,
templated NER is a very suitable and outstanding approach for NER on legal
contracts, as long as templates exist. Both systems, GermaNER and DBpedia
Spotlight were incorporated into a pipeline, but the system implemented in this
work offers the possibility for errors as well. This leads to the assumption, that
the two tools could improve way better, when evaluating independently from
this system. When looking at different evaluations, such as the CoNNL-2013
shared task[11, 12] or the evaluation of DBpedia Spotlight [90], this assumption
is partially confirmed.

Which NE type is recognized best?

The answer to this question can be easily given. The types being recognized via
rule-based approaches (date, money value, and reference) obviously perform
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the best. This is mainly caused due to the structure which represents types
like those. Once those types are neglected, organizations perform the best.

Which NE type is recognized worst?

The type other has in its nature, that it not just compromises miscellaneous
entities, it also often covers NE of other types, falling through their own clas-
sifiers. Moreover, there exist a huge variety of different NE types, excluding
the set of categories used in this work. All those types shall be recognized by
the other type. This may be feasible for a system such as DBpedia Spotlight,
but statistical approaches and even the templated NER approach, clearly fail
to detect all NEs of such types.

6.2.2 NED

In the course of this work, only templated NED is implemented. An evaluation
based on measures such as precision, recall, and F1 measure, as it has been
done for NER approaches is not suitable at this point. The concept behind
templated NED is quite simple, as discussed in Section 5.1.4. The disambigua-
tion is solved by means of comparing the placeholder names in the template
with the type and attribute names in the semantic model. This linking works
always, as long as the user chooses the names accordingly. Hence, an error
only occurs, if there is a mismatch between the naming in the semantic model
and the contract template. It does not make sense to evaluate the person,
who defined the evaluation set. One could suggest to conduct the evaluation
by incorporating the whole process from the textual contract representation
via NER and NED to the populated semantic model. However, only NEs rec-
ognized by the templated NER can be linked and thus, the evaluation result
would mirror the results from assessing templatedNER. This is the reason,
why no evaluation was performed on templated NED.
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Legal informatics is on a growing branch and one of the trends in recent IT de-
velopments. This is also accelerated by the digitalization. More and more legal
documents are digitized and thus there is a big need of analyzing and struc-
turing those. One important type of legal documents, which is used heavily by
many different people, are contracts. Hence, this work was concerned with the
semantic analyses and restructuring of legal contracts by utilizing NER and
NED.

At first, a brief introduction was given to motivate the topic. Then, important
terms used in this work were described. After a comprehensive literature
review was performed, the relevant work for the field of NER and NED, also
in particular for the legal domain in Germany, was summarized in the next
chapter. The first part of this thesis was rounded off with the description of
the research method used, as well as with the definition of relevant research
questions.

The design chapter first discussed the various concepts of NER and NED. It
can be distinguished between rule-based, knowledge-based, and ML-based ap-
proaches, augmented by a technique called templated NER, being developed in
the course of this work. NED is mainly done by applying ML techniques, too.
The literature differentiates between SML, SSML, and USML. Again, a tem-
plated approach was introduced as well. Furthermore, in the context of that
chapter, the involved systems were introduced, namely Lexia and SocioCortex.
Lexia is a legal data science environment that can be used for the exploration
and analysis of legal documents. SocioCortex is a hybrid wiki with support
for a powerful expression language. The design chapter was finished with an
requirements analysis, eliciting crucial requirements for the prototypical im-
plementation, before the definition of a suitable architecture took place. In the
implementation phase of this thesis, Lexia was extended by a semantic analy-
sis component, which allows the semantic analyses and restructuring of legal
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contracts. For that reason, models which were transposed into SocioCortex
are used to mirror the semantic information of such a contract.

The final part of this study constitutes the evaluation. A two-fold evaluation
was applied. First, a qualitative assessment was conducted, by utilizing semi
structured expert interviews. Second, a comprehensive quantitative evaluation
was performed. Hereby, only NER was assessed, because there was no sense
in evaluating the templated NED approach. A manually created data set was
created to enable the evaluation. The evaluation was based on the state of
the art approach for evaluating NER. A confusion matrix for each system was
created to enable the determination of the relevant measures, namely precision,
recall and F1. By means of these metrics, the results could be obtained and
compared.

What has just been described, was guided by individual research questions.
These research questions were defined in Chapter 3.1. Through the course
of this thesis, the research questions were investigated and answered. In what
follows, the reflection on those questions is discussed in the next section. Next,
a brief conclusion is made. This thesis is rounded up with an outlook into
future research.

7.1 Reflection on the Research Questions

In the paragraphs that follow, a brief summary of the results of this work,
referring to the individual research questions defined in Chapter 3.1, is pro-
vided.

Which information does a stakeholder want to extract from legal
contracts?

Lawyers as well as legal experts usually work with contracts on a daily base.
The inspection of such documents represents a decent part of their workloads.
Simple meta informations like the landlord and tenant of a renting agreement
are important, but also more complex knowledge such as the rental object
along with its properties, including size, location or rent. A jurist with his
trained eyes is pretty fast in extracting this information, in particular if the
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contract design is familiar and standardized. A system as the one developed
in the context of this thesis, must extract this information extremely fast and
display it in a very structural way, otherwise it would not be beneficial to the
user. Speaking about contracts in general, complex issues such as the question
of liability are crucial, as well as various individual parameters for specific
contract types, like change of control clauses. Extracting these information and
presenting it to a user in a smart way would be totally helpful. Recapitulating
it can be noticed, that the information demand of legal experts cannot be
generalized, but needs to be tailored to the specific use case and domain.

What are the functional and non-functional requirements of a soft-
ware for the analysis of legal contracts?

The FR and NFR were elicited in Chapter 4.4. Important FR for a system
semantically analyzing and structuring legal contracts are to incorporate dif-
ferent methods to NER and NED. The more techniques are utilized, such as
statistical SML based NER or knowledge based NER, the better the system
can perform. It is almost always beneficial to resort to knowledge bases either
way. A non-functional crucial aspect is the pipeline architecture. Utilizing
an architecture like Apache UIMA’s pipeline system simplifies the integra-
tion of different approaches a lot. Besides common NFRs like maintainability,
reusability or extensibility, a smart UI is also favorable. Table 7.1 provides an
overview of the defined requirements and their degree of fulfillment. Hereby,
the requirements can be either completely fulfilled (3), partially fulfilled (X),
or unfulfilled(7).

As all the checkmarks indicate already, the majority of requirements is re-
garded and implemented. Only three FR are not implemented, each of them
concerning different approaches to NED (FR04, FR05, and FR06). As this was
just not possible in the course of this work, the violation of these requirements
is not an issue. The implementation of templated NED (FR07) is included as
it was planned. All approaches to NER are implemented as required (FR01,
FR02, FR03, as well as NFR05, and NFR06). Apache UIMA Pipelines are
used for all NER pipelines (FR08), only the combination of the pipelines is
just possible within the UI, but not technically (FR09). The requirements
concerning the semantic models were all minded (FR10-FR13). From a non-
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Table 7.1: Verification of the requirements
ID Requirement Priority Fulfillment
FR01 Statistical ML based NER 4 3

FR02 Knowledge-based NER 4 3

FR03 Templated NER 5 3

FR04 Supervised NED 2 7

FR05 Unsupervised NED 1 7

FR06 Dictionary-based NED 2 7

FR07 Templated NED 3 3

FR08 Use of Apache UIMA Pipelines for NER 5 3

FR09 Combine NER and NED Pipelines 3 X
FR10 Create Contract Models 5 3

FR11 Update and Change Contract Models 3 3

FR12 Delete Contract Models 2 3

FR13 Use of Lexia’s Drafted Legal Documents 5 3

NFR01 Simple UI 5 3

NFR02 Maintainability of Software Architec-
ture

5 3

NFR03 Extensibility of Software Architecture 5 3

NFR04 Reusability of Software Architecture 3 3

NFR05 Use GermaNER for Statistical ML NER 4 3

NFR06 Use DBPedia for Knowledge-based
NER

4 3

NFR07 Reuse the Models and Structure from
the Semantic Model Compoenent

2 3

NFR08 Incorporate Elasticsearch for the Stor-
age

5 3

NFR09 Incorporate SocioCortex for the Storage 3 3

NFR10 Utilize Lexia’s existing Pipeline Archi-
tecture

5 3

function point of view, all requirements were heeded, because these are highly
relevant for the architecture design.

Which NLP technologies can be used, to extract the semantic mean-
ing of a legal contract? How to combine these technologies into an
Apache UIMA pipeline?

For the semantic analysis of legal contracts, different NLP technologies are
applicable. As this work has shown, a good starting point is the utilization of
NER and NED technologies. These two tasks can be executed consecutively,
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where NED picks the results from NER, to assign NEs to semantic functions
or roles. In terms of NER, different methods are suitable. In particular SML-
based methodologies are proper for this task. Techniques as HMM, CRF or
VSMs proved to be appropriate approaches. A NER system should always
incorporate knowledge bases, for instance in form of gazetteers. Coming to
NED, methods based on SML or SSML are most helpful. However, when
trying to assign NEs to individual contract models, the task is very challenging
and further research is required. A lot of state of the art tools already provide
support for Apache UIMA pipelines. But even if a system does not support it
out of the box, a wrapper can be easily created.

How does a prototypical implementation enabling the semantic anal-
ysis of legal contracts look like?

In the framework of this thesis, a prototypical implementation to semantically
analyses and structure legal contracts was developed. The implementation was
integrated into Lexia, also by means of SocioCortex. The NER task can be
performed by applying three different approaches: (1) GermaNER, (2) DB-
pedia Spotlight, and (3) templated NER. In particular when having contract
templates, templated NER is a really suitable method. When the extracted
NEs are subject to be linked to semantic functions, semantic models of legal
contracts are a proper way to define these roles. The linking process to the
types and attributes of such a model can be executed by applying NED. After
recognizing NEs via templated NER, obviosuly an approach called templated
NED is a good fit to do so. After the process has finished, a tabular depiction
of the semantic knowledge seems to be a convenient method to reveal semantic
information.

How can such a system be integrated into the workflow of potential
stakeholders?

Legal experts often work together and communicate a lot. The reason behind
this is in the nature of their workflow. They need to lookup old cases on a
regular base and thus their work is based on huge corpora of legal documents.
This demands for a legal data-science environment such as Lexia. Such a plat-
form offers many ways to work in a collaborative manner. Hence, a platform
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like Lexia is highly qualified to serve as a base for an implementation enabling
semantic analysis of legal contracts. This is the reason, why the prototypical
implementation of this study is integrated into Lexia.

7.2 Conclusion

In this work, a prototypical implementation enabling the semantic analysis
and structuring of legal contracts was designed and developed, utilizing Lexia.
Common concepts and strategies found in the literature study form the basis
for the developed requirements and solutions. Three different NER methods,
namely GermaNER, DBpedia Spotlight, as well as an individually developed
solution called templated NER are responsible for the extraction of NEs. The
disambiguation of the recognized entities towards semantic functions, which
are represented in semantic models, is done by NED. When having individual
domain specific models, it is very hard to incorporate proper NED. This is
mainly because of the lack of training data. In order to attain the breakthrough
from a legal contract to a populated contract model, this work implemented
the templated NED approach. By means of this approach, a contract model
in SocioCortex was successfully populated with semantic information within
the contract.

The pipeline architecture is based on Apache UIMA and thus can be easily
extended. This enables the integration of existing analysis engines, used in
Lexia, into the pipelines for NER and NED. Future work on the semantic
anlaysis of legal contracts, can be easily integrated into the existing pipeline
architecture.

The evaluation of the different approaches used in this study showed, that
templated NER is an appropriate approach to recognizing NEs within legal
contracts, which are based on templates. It also revealed the applicability of
common NER tools like GermaNER or DBpedia within the legal domain, but
also showed the necessity of future research in this field.

The prototypical implementation along with the outcomes of this work are an
additional knowledge base and provide an appropriate starting point for future
research in the fields of NER and NED on German legal contracts.
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7.3 Limitations and Feature Work

Even though this work provides a good starting point for further work, some
limitations described must be kept in mind.

Although each evaluation experiment was conducted three times in order to
obtain a significant result, and even though the results looked still quite promis-
ing, the evaluation experiments require further replication to attain a statisti-
cally significant value. This is caused in particular due to the manual creation
of the evaluation date set, which is furthermore very small. Moreover, the eval-
uation of templated NER was obviously conducted on a different data set than
the other two approaches (GermaNER and DBpedia Spotlight) and hence, the
comparison of the three methods it not suitable.

The results of the GermaNER as well as the DBpedia Spotlight pipeline may
not reflect their actual performance. The NE types, regarded in this work are:
person, organization, location, date, money value, reference, and other. Dates,
money values and references were only detected using rule-based methodolo-
gies, but incorporated into both pipelines. This already sophisticates the re-
sults. In addition, these two technologies were not used in isolation, but uti-
lized by the prototypical implementation of this thesis. Hence, system errors
are conveyed to the two tools.

The templated NER approach is only suitable for corpora, where a small
amount of templates define a massive number of contracts. But if that is the
case, by diligently defining the template placeholders and incorporating tem-
plated NED, awesome results can be achieved. Due to this, the implementation
of the templated approaches to NER and NED are a promising approach for
the semantic analysis and structuring of legal contracts. For the future work,
it could be an interesting approach to train the models of NER tools, such
as GermaNER specifically for the German legal domain. If at the same time,
big evaluation data sets arise, the NER task on German legal contracts could
be improved considerably. Then the next step, would be to build classifiers
for the disambiguation of those recognized NEs, towards individual semantic
models. Eventually, this may lead to digitized and properly structured legal
contracts.
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Appendix

A Existing Lexia Classes

This appendix contains the full source code of existing Lexia classes, which are
heavily used in this work.

A.1 PipelineRepository

1 public class PipelineRepository {
2

3 private static PipelineRepository pipelineRepository = new PipelineRepository();
4

5 private List<PipelineDescription> pipelines = Arrays.asList(
6 pipe("Advanced Pipeline", AdvancedPipeline::new),
7 pipe("Subject Pipeline", SubjectPipeline ::new, false ) ,
8 pipe("Remove Annotations", RemoveAnnotationsPipeline::new),
9 pipe("Reference Detection Pipeline", ReferenceDetectionPipeline::new),

10 pipe("Active Learning Pipeline", ActiveLearningPipeline::new),
11 pipe("Dependency Parsing Pipeline", DependencyParsingPipeline::new, false),
12 pipe("Judgment Reference Pipeline", JudgmentReferencePipeline::new),
13 pipe("Extract Syntactic Dependencies", SyntacticDependenciesPipeline::new,

false),
14 pipe("LSH Pipeline", LSHPipeline::new, false),
15 pipe("GermaNER Pipeline", GermaNERPipeline::new, false),
16 pipe("DBPedia Pipeline", DBPediaPipeline::new, false),
17 pipe("Templated NER", TemplatedNERPipeline::new, false)
18

19 ) ;
20

21 private PipelineRepository() {
22 // inits the ids
23 for ( int i = 0; i < pipelines. size () ; i++) {
24 pipelines .get( i ) . id = i;
25 }
26 }
27

28 public static PipelineRepository getInstance() {
29 return pipelineRepository;
30 }
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31

32 public Pipeline getPipeline( int id) {
33 return pipelines .get(id) . supplier .get() ;
34 }
35

36 public List<PipelineDescription> getPipelines() {
37 return pipelines ;
38 }
39

40 public PipelineDescription getDesription(int id) {
41 return pipelines .get(id) ;
42 }
43

44 public String pipelineName(int id) {
45 return pipelines .get(id) .name;
46 }
47

48 private PipelineDescription pipe(String name, Supplier<Pipeline> supplier) {
49 return new PipelineDescription(name, supplier);
50 }
51

52 private PipelineDescription pipe(String name, Supplier<Pipeline> supplier, boolean
supportsParallel) {

53 return new PipelineDescription(name, supplier, supportsParallel) ;
54 }
55

56 public static class PipelineDescription {
57 private int id ;
58 private String name;
59 private boolean supportsParallel;
60 private Supplier<Pipeline> supplier;
61

62 PipelineDescription(String name, Supplier<Pipeline> supplier) {
63 this .name = name;
64 this . supplier = supplier;
65 this . supportsParallel = true;
66 }
67

68 PipelineDescription(String name, Supplier<Pipeline> supplier, boolean
supportsParallel) {

69 this (name, supplier);
70 this . supportsParallel = supportsParallel;
71 }
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72

73 public boolean supportsParallel() {
74 return supportsParallel ;
75 }
76

77 public int getId() {
78 return id ;
79 }
80

81 public String getName() {
82 return name;
83 }
84 }
85 }
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A.2 Abstract Pipeline

1 public abstract class Pipeline {
2 protected AnalysisEngine pipe;
3 protected JCas jCas;
4

5 @SafeVarargs
6 protected static AnalysisEngine assemblePipeline(String[] rutaScripts , Class<?

extends AnalysisComponent>... c) throws ResourceInitializationException,
IOException, InvalidXMLException {

7 AnalysisEngineDescription[] d = new AnalysisEngineDescription[c.length];
8

9 for ( int i = 0; i < c.length; i++) {
10 d[ i ] = createEngineDescription(c[i]) ;
11 }
12

13 AnalysisEngineDescription componentsDesc = createEngineDescription(d);
14 AnalysisEngineDescription rutaDesc;
15 AnalysisEngineDescription completeDesc;
16 if (rutaScripts != null && rutaScripts.length > 0) {
17 rutaDesc =

createEngineDescription(UimaUtil.createRutaDescriptions(rutaScripts));
18 completeDesc = createEngineDescription(componentsDesc, rutaDesc);
19 } else
20 completeDesc = componentsDesc;
21 return createEngine(completeDesc);
22 }
23

24 public void setup(LegalDocument legalDocument, String[] rutaScripts) throws
ResourceInitializationException, IOException, InvalidXMLException,
CASException {

25 pipe = assemblePipeline(legalDocument, rutaScripts);
26 initCas(legalDocument, rutaScripts);
27 }
28

29 protected abstract AnalysisEngine assemblePipeline(LegalDocument legalDocument,
String[] rutaScripts) throws ResourceInitializationException, IOException,
InvalidXMLException;
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31 protected void initCas(LegalDocument legalDocument, String[] rutaScripts) throws
ResourceInitializationException, IOException, InvalidXMLException,
CASException {

32 jCas = UimaUtil.produceJCas(rutaScripts);
33 jCas.setDocumentLanguage(legalDocument.getLanguage());
34 }
35

36 public PipelineResult process(Article article , String text) throws
AnalysisEngineProcessException {

37 pipe.process(jCas);
38 return createAnnotationStructures(article) ;
39 }
40

41 public PipelineResult processStandalone(Article article , String text , String []
rutaScripts) throws AnalysisEngineProcessException, CASException,
ResourceInitializationException, InvalidXMLException, IOException {

42 setup( article .getLegalDocument(), rutaScripts);
43 preArticle( article , text) ;
44 process( article , text) ;
45 postArticle( article ) ;
46 return createAnnotationStructures(article) ;
47 }
48

49 protected PipelineResult createAnnotationStructures(Article article ) {
50 Map<String, Object> result = new HashMap<>();
51 if ( article != null) {
52 boolean isRawContentInHtml = HtmlUtil.isHtml(article.getContent());
53 result = createAnnotationAndAnnotationStructure(jCas,

isRawContentInHtml, article.getContent(), new JSONObject(),
article.getID(), article.getLegalDocument().getID());

54 storeAnnotationsCount(article.getLegalDocument(), jCas);
55 }
56 return new PipelineResult(result) ;
57 }
58

59 public void preDocument(LegalDocument d) {
60 }
61

62 public void postDocument(LegalDocument d) {
63 if (pipe != null)
64 pipe.destroy() ;
65 }

vi



Appendix

66

67 public void preArticle(Article article , String text) {
68 if (jCas != null) {
69 jCas.setDocumentLanguage(article.getLegalDocument().getLanguage());
70 jCas.setDocumentText(text);
71 }
72

73 }
74

75 public void postArticle(Article article ) {
76 if (jCas != null)
77 jCas. reset () ;
78 }
79

80 public Predicate<Article> processArticle() {
81 return x −> true;
82 }
83 }
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A.3 PipelineExecutor

1 public class PipelineExecutor {
2

3 private static PipelineJobList jobs = PipelineJobList.getInstance();
4 private static PipelineRepository repo = PipelineRepository.getInstance();
5 private int threads;
6 private BiFunction<List<Article>, Integer, List<List<Article>>> splitStrategy;
7 private int threadThreshold = 100;
8

9 public PipelineExecutor() {
10 // Split the article list into chunks the same size for each thread
11 this . splitStrategy = (x, y) −> {
12 int partitionSize = x.size () / y;
13 List<List<Article>> partitions = new LinkedList<>();
14 for ( int i = 0; i < x.size () ; i += partitionSize) {
15 partitions .add(x.subList(i ,
16 Math.min(i + partitionSize, x. size ()))) ;
17 }
18 return partitions ;
19 };
20 this .threads = 1;
21 }
22

23 public PipelineExecutor(int threads) {
24 this () ;
25 this .threads = threads;
26

27 }
28

29 public PipelineExecutor(int threads, BiFunction<List<Article>, Integer,
List<List<Article>>> splitStrategy) {

30 this .threads = threads;
31 this . splitStrategy = splitStrategy;
32 }
33

34 public LegalDocument runPipeline(LegalDocument ld, String[] scripts, int pipeline ,
Predicate<Article> processArticle, boolean updateMetricInformation) throws
AnalysisEngineProcessException, CASException,
ResourceInitializationException, InvalidXMLException, IOException {
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35 // init stuff
36 PipelineJob job = initJob(ld) ;
37 long startTime = System.currentTimeMillis();
38 JSONObject annotationStructures = new JSONObject();
39

40 List<Article> articlesToProcess = ld.getAllArticlesInArticleContainer(null ) ;
41

42 if (articlesToProcess . size () > threadThreshold &&
repo.getDesription(pipeline).supportsParallel())

43 threads = Runtime.getRuntime().availableProcessors(); // TODO Maybe
limit the threadcount?

44

45 Logger.info(String.format("Starting to annotate %s from %s with %s and %d
thread(s)", ld.title, ld.promulgationDate, repo.pipelineName(pipeline),
threads));

46

47 List<ExecutionUnit> executionUnits = new ArrayList<>(threads);
48 List<List<Article>> partitions = splitStrategy.apply(articlesToProcess,

threads);
49

50 // Start threads
51 for ( int i = 0; i < threads; i++) {
52 ExecutionUnit executionUnit = new ExecutionUnit(pipeline, scripts,

partitions.get( i ) , processArticle , job) ;
53 executionUnits.add(executionUnit);
54 executionUnit.start() ;
55 }
56

57 // Wait for completion of pipelines and merge annotationStructures
58 for (ExecutionUnit executionUnit : executionUnits) {
59 try {
60 executionUnit.join() ;
61 updateAnnotationStructures(annotationStructures,

executionUnit.annotationStructures);
62 } catch (InterruptedException e) {
63 e.printStackTrace();
64 }
65 }
66

67 ld .annotationStructures = annotationStructures.toString();
68 if (updateMetricInformation)
69 ld .determineMetrics();
70 writeAnnotationData(ld);
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71

72 long processingTime = System.currentTimeMillis() − startTime;
73 long startSave = System.currentTimeMillis();
74 articlesToProcess .forEach(Article :: saveEntity);
75 ld .saveEntity() ;
76

77 long savingTime = System.currentTimeMillis() − startSave;
78

79

80 Logger.info("Finished! It took: " + (System.currentTimeMillis() − startTime)
+ "ms (Processing: " + processingTime + "ms, Saving: " + savingTime +
"ms)");

81 job. close () ; // Doesn’t show count of processed articles anymore.
Maybe−to−do?

82 return ld ;
83 }
84

85 private boolean contentEmpty(Article article) {
86 return article .getContent() == null || article .getContent().isEmpty() ||
87 HtmlUtil.convertToPlaintext(article .getContent()).isEmpty();
88 }
89

90 private void updateJob(PipelineJob job, Article article ) {
91 job.setStatus("Processing \"Paragraph" + (article.getNr() == null ?

article .weight : article .getNr()) + " " + article .getHeader() + "\"");
92 job.setCurrentArticle(job.getCurrentArticle() + 1);
93 }
94

95 private void updateAnnotationStructures(JSONObject annotationStructures,
JSONObject newJson) {

96 Iterator e = newJson.keys();
97 while (e.hasNext()) {
98 String next = (String) e.next();
99 try {

100 if (!annotationStructures.has(next))
101 annotationStructures.put(next, newJson.get(next));
102 } catch (JSONException e1) {
103 e1.printStackTrace();
104 break;
105 }
106 }
107 }
108

109 private void writeAnnotationData(LegalDocument legalDocument) {
110 // create annotation dump
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111 StringBuilder sb = new StringBuilder();
112 for (Article article : legalDocument.getAllArticlesInArticleContainer(null)) {
113 sb.append(createAnnotationDataForCSVDownload(article.weight,

article.getNr(), article.getAnnotations()));
114 }
115

116 legalDocument.annotationDataForDownload =
"Number;Artikel;Annotation;Start;Ende;Text;;_;" + sb.toString();

117 if (legalDocument.SC_TYPE().equals(DraftedDocument.SC_TYPE)) {
118 writeAnnotationDataToFile(legalDocument, legalDocument.creationDate,

legalDocument.annotationDataForDownload.replace(";_;",
System.getProperty("line.separator")));

119 } else {
120 writeAnnotationDataToFile(legalDocument,

legalDocument.promulgationDate,
legalDocument.annotationDataForDownload.replace(";_;",
System.getProperty("line.separator")));

121 }
122 }
123

124 private PipelineJob initJob(LegalDocument legalDocument) {
125 PipelineJob job = new PipelineJob(legalDocument.getID(),

legalDocument.getID(), legalDocument.getDocumentType(), "", new Date());
126

127 jobs .addJob(job);
128 job.setDocumentName(legalDocument.title);
129 int articleCount = legalDocument.getAllArticlesInArticleContainer(null).size () ;
130 job.setMaxArticles(articleCount);
131

132 return job;
133 }
134

135 private class ExecutionUnit extends Thread {
136 private final LegalDocument legalDocument;
137 private Pipeline pipeline ;
138 private List<Article> articles ;
139 private Predicate<Article> processArticle;
140 private PipelineJob job;
141 private PipelineResult pipelineResult ;
142

143 private JSONObject annotationStructures;
144

145 public ExecutionUnit(int pipeline, String [] scripts , List<Article> articles ,
Predicate<Article> processArticle, PipelineJob job) throws CASException,
ResourceInitializationException, InvalidXMLException, IOException {

146 this . articles = articles ;
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146 this . articles = articles ;
147 this . processArticle = processArticle;
148 this .job = job;
149 this .legalDocument = articles.get(0).getLegalDocument();
150 this .annotationStructures = new JSONObject();
151

152 this . pipeline = repo.getPipeline(pipeline) ;
153 this . pipeline .setup(legalDocument, scripts);
154 }
155

156 @Override
157 public void run() {
158 pipeline .preDocument(legalDocument);
159 for (Article article : articles ) {
160 String plainText = HtmlUtil.isHtml(article.getContent()) ?

HtmlUtil.convertToPlaintext(article .getContent()) :
article .getContent();

161

162 if (! processArticle . test ( article )
163 || ! pipeline . processArticle () . test ( article )
164 || contentEmpty(article)
165 || plainText.isEmpty())
166 continue;
167

168 updateJob(job, article ) ; // TODO jobs aren’t threadsafe. Fix this.
169 Logger.info("Processing Paragraph" + (article.getNr() == null ?

article .weight : article .getNr()) + " " + article .getHeader());
170 pipeline . preArticle( article , plainText);
171 try {
172 pipelineResult = pipeline.process( article , plainText);
173 } catch (AnalysisEngineProcessException e) {
174 e.printStackTrace();
175 }
176 pipeline . postArticle( article ) ;
177 article .updateAnnotations(pipelineResult.getAnnotationData());
178

179 // merge annotation structures
180 updateAnnotationStructures(annotationStructures,

pipelineResult.getAnnotationStructures());
181 }
182 pipeline .postDocument(legalDocument);
183 }
184 }
185 }
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A.4 Entity

1 public abstract class Entity {
2

3 public abstract String getID();
4

5 public abstract void setID(String UID);
6

7 protected abstract boolean saveEntityElasticsearch() ;
8

9 @JsonIgnore
10 public abstract boolean isNewEntity();
11

12 public abstract String SC_TYPE();
13

14 public abstract String SC_TYPE_PLURAL();
15

16 public boolean saveEntity() {
17 return saveEntityElasticsearch() ;
18 }
19

20 public void deleteEntity() {
21 if (! isNewEntity()) {
22 ElasticsearchServer .deleteById(SC_TYPE(), getID());
23 }
24 }
25 }
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B Newly implemented Classes

This appendix compromises different classes being developed in the course of
this work, which were too big to put them in place.

B.1 CoNNLSegmenter

1 public class CoNLLSegmenter extends JCasAnnotator_ImplBase {
2

3 public static final String FULL_VIEW = "FullView";
4

5 @Override
6 public void process(JCas jCas) throws AnalysisEngineProcessException {
7 try {
8 String text = jCas.getView(FULL_VIEW).getDocumentText();
9

10 String plainText = text;
11

12 plainText = plainText.replaceAll("[^A−Za−z0−9äöüÄÖÜß\n.]", "\n$0\n");
13

14 plainText = plainText.replaceAll("\n{1,}|\r\n{1,}", " ");
15

16 plainText = plainText.replaceAll(" {1,}", "\n");
17

18 plainText = plainText.replaceAll("(?<![0−9])\\.", "\n$0\n\n");
19

20 plainText = plainText.replaceAll(" [!?:] ", "$0\n");
21

22 jCas.createView(NERReader.CONLL_VIEW);
23 jCas.getView(NERReader.CONLL_VIEW).setDocumentText(plainText);
24 }
25 catch (CASException e) {
26 throw new AnalysisEngineProcessException(e);
27 }
28 }
29 }
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B.2 NETransformer

1 public class NETransformer extends JCasAnnotator_ImplBase {
2 private Logger logger;
3

4 public static final String FULL_TEXT = "fullText";
5 @ConfigurationParameter(name = FULL_TEXT, mandatory = true)
6 private static String fullText = null;
7

8 public static String LEXIA_TYPES_VIEW = "lexiaTypesView";
9

10 @Override
11 public void initialize (UimaContext context) throws ResourceInitializationException

{
12 super. initialize (context);
13 logger = context.getLogger();
14 PersonPatterns.clearPattern();
15 LocationPatterns.clearPattern();
16 OrganisationPatterns.clearPattern();
17 OtherPatterns.clearPattern();
18 }
19

20 @Override
21 public void process(JCas jCas) throws AnalysisEngineProcessException {
22 try {
23 jCas.createView(LEXIA_TYPES_VIEW);
24 jCas.getView(LEXIA_TYPES_VIEW).setDocumentLanguage("de");
25 jCas.getView(LEXIA_TYPES_VIEW).setDocumentText(fullText);
26 }
27 catch(CASException e) {
28 e.printStackTrace();
29 }
30 FSIterator annotationIterator = jCas.getAnnotationIndex().iterator();
31 boolean entityStarted = false ;
32 String currentType = null;
33 String currentPattern = null;
34 while(annotationIterator.hasNext()) {
35 Annotation annotation = (Annotation) annotationIterator.next();
36 String type = annotation.getType().getName();
37 if (type.equals("de.tudarmstadt.ukp.dkpro.core.api.ner.type.NamedEntity"))

{
38 List<Feature> features = annotation.getType().getFeatures();
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39 String entityType =
annotation.getFeatureValueAsString(features.get(features.size () −
1));

40 System.out.println("ANNO: " + annotation.getCoveredText() + " : " +
entityType);

41

42 if (! entityStarted) {
43 switch(entityType) {
44 case "O":
45 break;
46 default :
47 currentType = entityType;
48 currentPattern = annotation.getCoveredText();
49 entityStarted = true;
50 break;
51 }
52 }
53 else {
54 switch(entityType) {
55 case "O":
56 switch(currentType) {
57 case "B−PER":
58 if (!PersonPatterns.getPersonPattern().
59 contains(currentPattern)) {
60 PersonPatterns.
61 addPersonPattern(currentPattern);
62 }
63 break;
64 case "B−LOC":
65 if (!LocationPatterns.getLocationPattern().
66 contains(currentPattern)) {
67 LocationPatterns.
68 addLocationPattern(currentPattern);
69 }
70 break;
71 case "B−ORG":
72 if (!OrganisationPatterns.getOrganisationPattern().
73 contains(currentPattern)) {
74 OrganisationPatterns.
75 addOrganisationPattern(currentPattern);
76 }
77 break;
78 case "B−OTH":
79 if (!OtherPatterns.getOtherPattern().
80 contains(currentPattern)) {
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81 OtherPatterns.addOtherPattern(currentPattern);
82 }
83 break;
84 }
85 currentPattern = null;
86 currentType = null;
87 entityStarted = false ;
88 break;
89 default :
90 if (annotation.getCoveredText().equals(".")) {
91 currentPattern = currentPattern +

annotation.getCoveredText();
92 }
93 else {
94 currentPattern = currentPattern + " " +

annotation.getCoveredText();
95 }
96 break;
97 }
98 }
99 }

100 }
101 }
102 }
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B.3 DBPediaNETransformer

1 public class DBPediaNETransformer extends JCasAnnotator_ImplBase {
2 private Logger logger;
3

4 public static final String FULL_TEXT = "fullText";
5 @ConfigurationParameter(name = FULL_TEXT, mandatory = true)
6 private static String fullText = null;
7

8 public static String LEXIA_TYPES_VIEW = "lexiaTypesView";
9

10 @Override
11 public void initialize (UimaContext context) throws ResourceInitializationException

{
12 super. initialize (context);
13 logger = context.getLogger();
14 PersonPatterns.clearPattern();
15 LocationPatterns.clearPattern();
16 OrganisationPatterns.clearPattern();
17 OtherPatterns.clearPattern();
18 }
19

20 @Override
21 public void process(JCas jCas) throws AnalysisEngineProcessException {
22 try {
23 jCas.createView(LEXIA_TYPES_VIEW);
24 jCas.getView(LEXIA_TYPES_VIEW).setDocumentLanguage("de");
25 jCas.getView(LEXIA_TYPES_VIEW).setDocumentText(fullText);
26 }
27 catch(CASException e) {
28 e.printStackTrace();
29 }
30 FSIterator annotationIterator = jCas.getAnnotationIndex().iterator();
31 while(annotationIterator.hasNext()) {
32 Annotation annotation = (Annotation) annotationIterator.next();
33 String type = annotation.getType().getName();
34 if (type.equals("org.dbpedia.spotlight .uima.types.JCasResource")) {
35 List<Feature> features = annotation.getType().getFeatures();
36 String entityType =

annotation.getFeatureValueAsString(features.get(features.size () −
2));

37 String precedingText = jCas.getDocumentText().substring(0,
annotation.getBegin());
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38

39 int lastIndex = 0;
40 int count = 0;
41 while(lastIndex != −1) {
42 lastIndex = precedingText.indexOf("\r", lastIndex);
43 if (lastIndex != −1) {
44 ++count;
45 lastIndex += 2;
46 }
47 }
48 String currentPattern;
49 if (count > 0) {
50 currentPattern =

jCas.getDocumentText().substring(annotation.getBegin() +
count, annotation.getEnd() + count);

51 }
52 else {
53 currentPattern = annotation.getCoveredText();
54 }
55 if (entityType.contains("Place")) {
56 if (!LocationPatterns.getLocationPattern().contains(currentPattern))

{
57 LocationPatterns.addLocationPattern(currentPattern);
58 }
59 }
60 else if (entityType.contains("Person")) {
61 if (!PersonPatterns.getPersonPattern().contains(currentPattern)) {
62 PersonPatterns.addPersonPattern(currentPattern);
63 }
64 }
65 else if (entityType.contains("Organisation") ||

entityType.contains("Organization")) {
66 if (!OrganisationPatterns.getOrganisationPattern().
67 contains(currentPattern)) {
68 OrganisationPatterns.addOrganisationPattern(currentPattern);
69 }
70 }
71 else {
72 if (!OtherPatterns.getOtherPattern().contains(currentPattern)) {
73 OtherPatterns.addOtherPattern(currentPattern);
74 }
75 }
76 }
77 }
78 }
79 }
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C Interviews

This appendix contains the interview guideline, as well as the notes of the
performed interviews. However, the interviews are anonymised.

C.1 Interview Guideline

Interview	Guideline	–	Semi-structured	Expert	Interivews	
	

	
Interviewed	are	specialized	lawyers,	but	also	non	jurists	such	as	legal	experts.	
	
One	interviews	shall	not	exceed	30	minutes,	including	an	optional	demonstration.	
	
In	general,	it	shall	be	demonstrated	to	the	lawyer,	that	the	lawyer’s	work	is	already	really	
good	and	appreciated.	The	purpose	of	this	interview	is	to	understand	the	lawyer’s	process	as	
well	as	the	information	demand.	Eventually,	the	lawyer	shall	be	supported	by	our	research.	
	
Objectives	of	the	Interviews:	

- Was	sind	Informationsbedarfe	für	einen	Anwalt/Contract-Manager	
- What	are	the	information	demands	of	a	lawyer	or	legal	expert?	

o When	working	on	contracts?	
o When	working	on	huge	corpora?	

	
Structure:	
	
	
Person:	

1. Which	role	do	you	execute	in	your	company?	
2. How	many	years	of	professional	work	experience	can	you	deport?	
3. In	which	legal	domain	do	you	act?	
4. Do	you	have	a	certain	IT	affinity?		
	

Data:	
1. With	which	documents	do	you	work	daily?	To	which	kind	of	contracts	or	judgments	

belong	these	documents	mainly?	
2. Can	you	estimate	your	daily	effort	on	inspecting	and	reworking	these	documents?	
3. What	are	the	crucial	information	you	want	to	learn?	What	are	the	interrogations	you	

bring	on	the	documents?	
4. Can	you	imagine	an	easier	and	more	efficient	way	of	managing	your	documents?	To	

be	more	precise,	according	to	your	experience,	do	you	see	any	potentials	in	your	
daily	routine?	
	

Extraction	of	relevant	Information/NER:	
1. Do	you	already	utilize	tools	to	manage	your	documents?	

a. If	so:	For	what	do	these	tools	aim?	Is	it	just	a	simple	document	storage	or	are	
those	tools	able	to	support	you	actively,	for	instance	extracting	interesting	
information?	

b. If	not:	What	is	your	reasoning	for	not	using	supporting	tools?	
2. Would	the	extraction	of	named	entities	(extraction	of	information	like	persons,	

organisations,	locations,	dates,	monetary	values,	and	references)	be	beneficial	to	
you?	An	incrasing	number	of	start-ups	offering	such	solutions	arise	in	the	USA	and	
UK.	Would	it	be	imaginable	that	these	tools	support	you	in	your	daily	routines?	
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a. If	not:	What	would	be	beneficial?	Which	data	or	information	shall	be	
extracted?	

3. Would	a	structured	depiction	of	your	documents	be	beneficial	to	you?	How	shall	
such	a	view	look	like?	

a. Relevant	meta	information	(Contracting	parties,	duration,	contractual	item,	
contractual	volume,	etc.)	as	a	table?	

b. Rights	and	obligations?	
	

Optional	Demonstration:	
1. Simple	Example	

a. R&D	Template	of	TUM	
b. Template	was	filled	
c. We	show	the	extraction	of	named	entities	
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C.2 Interview 1

Interview	Guideline	–	Semi-structured	Expert	Interivews	
	

	
Person:	

1. Which	role	do	you	execute	in	your	company?	
a. Own	chancery	
b. Originally	inherited	as	chancery	with	5	partners	and	7	lawyers	
c. Now	a	single	chancery	with	2	employees	(1	lawyer	and	1	secretary)	

2. How	many	years	of	professional	work	experience	can	you	deport?	
a. Admission	since	2005,	17	years	

3. In	which	legal	domain	do	you	act?	
a. Employment	law	
b. Penology	

4. Do	you	have	a	certain	IT	affinity?		
a. PhD	in	IT	law	
b. Experiences	in	electronic	signature	approaches	
c. So	yes	for	sure	

	
Data:	

1. With	which	documents	do	you	work	daily?	To	which	kind	of	contracts	or	judgments	
belong	these	documents	mainly?	

a. Well	mix	
i. Contracts	are	always	included	
ii. Laws	must	be	regarded	all	the	time	
iii. Judgments	crucial	as	well	

2. Can	you	estimate	your	daily	effort	on	inspecting	and	reworking	these	documents?	
a. 20	minutes	emails	
b. Creation	of	writ	is	more	time	consuming	than	reading	
c. Also	print	and	read	on	paper	base,	higher	concentration	

3. What	are	the	crucial	information	you	want	to	learn?	What	are	the	interrogations	you	
bring	on	the	documents?	

a. Specific	for	the	case	
b. Cannot	be	generalized	

4. Can	you	imagine	an	easier	and	more	efficient	way	of	managing	your	documents?	To	
be	more	precise,	according	to	your	experience,	do	you	see	any	potentials	in	your	
daily	routine?	

a. Digitalization	can	help	a	lot	
b. However,	haptic	is	missed	then	
c. Often	a	paper	file	must	be	kept	
d. Having	2-3	systems	in	parallel	is	not	appealing	either	
e. Once	a	certain	document	size	is	reached,	only	digital	

	
Extraction	of	relevant	Information/NER:	

1. Do	you	already	utilize	tools	to	manage	your	documents?	
a. Officepackage,	PDF	tools,	standard	formats	

2. Would	the	extraction	of	named	entities	(extraction	of	information	like	persons,	
organisations,	locations,	dates,	monetary	values,	and	references)	be	beneficial	to	
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you?	An	incrasing	number	of	start-ups	offering	such	solutions	arise	in	the	USA	and	
UK.	Would	it	be	imaginable	that	these	tools	support	you	in	your	daily	routines?	

a. It	is	always	beneficial	
b. Important:	The	context	of	the	information	must	be	brokered	in	a	way	that	the	

compromised	information	ensures	a	faster	process	
c. The	interview	partner	is	not	sure	how	this	shall	work	technically	though	
d. Extracting	keywords	to	create	new	sorting	lists	would	be	nice	as	well	
e. Context	headlines	can	help	to	bundle	keywords	
f. If	functioning,	very	well	

3. Would	a	structured	depiction	of	your	documents	be	beneficial	to	you?	How	shall	
such	a	view	look	like?	

a. Contracts	differ	a	lot,	in	many	contracts	the	task	of	the	contract	creator	is	to	
disguise	information	

b. Often	structure	is	recognized	pretty	fast	though	
c. In	the	most	cases,	a	contract	is	structured	that	well,	that	it	can	be	shown	to	a	

non	legal	expert,	and	the	person	will	understand	it	
d. But	still,	when	this	can	be	improved,	it	would	be	awesome	
e. Such	a	system	may	be	more	beneficial	for	big	chanceries	with	a	huge	amount	

of	similar	cases,	than	for	a	small	chancery	with	many	individual	cases	
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C.3 Interview 2

Interview	Guideline	–	Semi-structured	Expert	Interivews	
	
	
Person:	

1. Which	role	do	you	execute	in	your	company?	
a. Lawyer	at	Freshfields	

2. How	many	years	of	professional	work	experience	can	you	deport?	
a. 1	year	and	9	months	

3. In	which	legal	domain	do	you	act?	
a. M&A	(80%),	Corporate	(20%)	

4. Do	you	have	a	certain	IT	affinity?		
a. Yes	it	is	existing	

	
Data:	

1. With	which	documents	do	you	work	daily?	To	which	kind	of	contracts	or	judgments	
belong	these	documents	mainly?	

a. 80%	Contracts,	and	70%	based	on	a	template	
2. Can	you	estimate	your	daily	effort	on	inspecting	and	reworking	these	documents?	

a. 15-20%	of	the	working	hours	
3. What	are	the	crucial	information	you	want	to	learn?	What	are	the	interrogations	you	

bring	on	the	documents?	
a. Not	applicable,	because	the	reason	for	looking	into	a	contract	is	varying	a	lot	
b. Each	clause	can	be	relevant	for	a	given	case	

4. Can	you	imagine	an	easier	and	more	efficient	way	of	managing	your	documents?	To	
be	more	precise,	according	to	your	experience,	do	you	see	any	potentials	in	your	
daily	routine?	

a. Drafting	can	be	simplified	a	lot	
b. Recognition	of	definition	chains	along	with	automatic	adaption	

	
Extraction	of	relevant	Information/NER:	

1. Do	you	already	utilize	tools	to	manage	your	documents?	
a. No	tools	
b. Prefer	to	read	printed	versions	
c. At	the	beginning	of	digitalization,	innovation	center	in	London	just	for	such	

purposes	was	just	established	
d. But	software	such	as	Leverton,	Kira	and	HotDocs	in	use	

2. Would	the	extraction	of	named	entities	(extraction	of	information	like	persons,	
organisations,	locations,	dates,	monetary	values,	and	references)	be	beneficial	to	
you?	An	incrasing	number	of	start-ups	offering	such	solutions	arise	in	the	USA	and	
UK.	Would	it	be	imaginable	that	these	tools	support	you	in	your	daily	routines?	

a. This	would	be	totally	beneficial	
3. Would	a	structured	depiction	of	your	documents	be	beneficial	to	you?	How	shall	

such	a	view	look	like?	
a. Also	very	helpful	
b. Excel	sheets,	tabular	form	
c. Hard	to	define	in	advance	what	is	necessary	
d. Information	demand	cannot	be	determined	easily	
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e. Simple	extractions	like	agreement	parties	is	rather	easy	to	read	without	
support	

f. Complex	structures	
i. change	of	control	clauses	
ii. Question	of	liability	
iii. Representatives	compensation	

	
Optional	Demonstration:	

1. The	interview	partner	liked	what	he	has	seen	
2. Pretty	good	tool	
3. Nice	visualisations	
4. Not	yet	suitable	for	a	chancery	though		
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C.4 Interview 3

Interview	Guideline	–	Semi-structured	Expert	Interivews	
	
	
Person:	

1. Which	role	do	you	execute	in	your	company?	
a. TUM	
b. Legal	department	
c. Creation	of	contracts,	negotiation	of	contracts	
d. Answering	legal	issues	

2. How	many	years	of	professional	work	experience	can	you	deport?	
a. Full	jurist,	but	no	admitted	lawyer	
b. 4	years	from	September	

3. In	which	legal	domain	do	you	act?	
a. Includes	a	variety	of	domains,	such	as	contract	law	or	industrial	property	

protection	
4. Do	you	have	a	certain	IT	affinity?		

a. Yes,	it	is	existing	
	

Data:	
1. With	which	documents	do	you	work	daily?	To	which	kind	of	contracts	or	judgments	

belong	these	documents	mainly?	
a. Just	contracts	
b. R&D	contracts	for	cooperations	

2. Can	you	estimate	your	daily	effort	on	inspecting	and	reworking	these	documents?	
a. Based	on	8	working	hours	a	day,	it	is	about	4	hours,	the	rest	of	the	time	is	

administrative	tasks	
3. What	are	the	crucial	information	you	want	to	learn?	What	are	the	interrogations	you	

bring	on	the	documents?	
a. Depends	on	the	specific	case	
b. However,	standardly	dispensation	of	privileges,	distortion	of	privileges	and	

liability	questions	
c. Also	compliance	with	the	law	
d. But	again,	very	difficult	to	generalize	

4. Can	you	imagine	an	easier	and	more	efficient	way	of	managing	your	documents?	To	
be	more	precise,	according	to	your	experience,	do	you	see	any	potentials	in	your	
daily	routine?	

a. Just	better	structures	
b. The	interview	partner	only	had	in	mind	simple	things	such	as	naming	of	files	

	
Extraction	of	relevant	Information/NER:	

1. Do	you	already	utilize	tools	to	manage	your	documents?	
a. Yes	
b. Shared	network,	storing	all	documents	
c. Contract	drafts	also	shared	in	that	network	
d. Also	hard	copies	in	use	

2. Would	the	extraction	of	named	entities	(extraction	of	information	like	persons,	
organisations,	locations,	dates,	monetary	values,	and	references)	be	beneficial	to	
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you?	An	incrasing	number	of	start-ups	offering	such	solutions	arise	in	the	USA	and	
UK.	Would	it	be	imaginable	that	these	tools	support	you	in	your	daily	routines?	

a. Yes	would	be,	but	again	depend	son	the	information	demand	and	the	
recognized	entities	

3. Would	a	structured	depiction	of	your	documents	be	beneficial	to	you?	How	shall	
such	a	view	look	like?	

a. Simple	meta	information	such	as	size	of	a	rental	object	would	be	already	
pretty	benefical	

b. Simple	standards	as	contracting	parties	not	though	
c. Things	which	can	occur	in	a	contract	at	every	possible	spot	are	subject	to	be	

detected	
d. Obligations	and	duties	as	well	
e. But	important	to	keep	the	context	always	in	mind,	otherwise	some	

information	may	be	useless	in	a	specific	case	
f. Different	wording	of	lawyers	makes	it	difficult	as	well	
g. Terminology	issues	
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